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Accessible technology and extensive digitization is fueling detailed data collection at the user level.
These novel data streams enable decision-making about what and when to deliver that is personalized to
users by taking their behaviors and contexts into account. This development is useful in many domains
like medicine, mobile health, public policy, and e-commerce. Such personalized decision-making
involves two fundamental tasks: (1) estimation and inference from data when there is no model for
the decision’s effect on a user and (2) simulations when there is a known model for the decision’s effect
on the user. Here we must overcome the issues facing classical approaches, namely statistical biases
due to adaptively collected data and computational bottlenecks caused by high-dimensional models.

I tackle these statistical and computational challenges by working on theories and methods across
causal inference, reinforcement learning (RL), Bayesian inference, optimization, and high-dimensional
statistics. My research provides strategies for personalized decision-making in three different settings:
sequentially adaptive experiments, randomized controlled trials (RCT), and model-based simulations
with immediate impact on healthcare. Below I provide a brief summary of my contributions.

(S1) Sequentially adaptive experiments with RL: I develop strategies to adjust the biases inherent to

adaptive trials in mobile health. My work designs algorithms for estimating individual treatment

effects (ITE) and assessing the personalization achieved by the RL algorithm used in the trial [16 17 18]

(S2) Heterogeneity in RCT: Machine learning (ML) models provide unreliable estimates of ITE for
typical RCTs in medicine due to low signal-to-noise ratio. I introduce a data-driven approach for

RCTs to reliably estimate the heterogeneity in treatment effect.!1°]

(S3) Simulations with computational models: My work on fast sampling with Markov chain

12,13,7] speed up

computationally challenging high-dimensional personalized simulations, e.g., in cardiology.

Monte Carlo (MCMC)!>8 3] and uncertainty propagation using compression!

Applications. My research involves collaborations with specific goals for real-world decision-making.
Methods from (S1) help health scientists design effective mobile apps to assist users in achieving
physical fitness and managing stress and addiction. Approaches from (S2) help doctors estimate if a
drug is very effective for some clinically interpretable patient subgroup. My work in (S3) speeds up
non-invasive therapy response simulations in digital twin heart experiments. Finally, I helped build
forecasting models in a non-profit collaboration for limited PPE allocation to needy hospitals during
the COVID pandemic.[!!

Besides healthcare, my research is also applicable for decision-making in public policy, social science,
and recommender systems in e-commerce. I intend to continue cutting-edge interdisciplinary research
and develop principled approaches to solve real-world problems. I now summarize my research in two
broad threads: sample-efficient estimation and inference and computationally-efficient simulations.®”

1. Sample-efficient estimation and inference

My first research thread introduces theory and methods for reliable and personalized recommendations
with novel data streams and tackle several known challenges in sequential experiments and RCTs.
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Counterfactual inference and personalization. Sequential experiments in mobile health and
digital platforms aim to provide personalized treatments to N users over T time points using online
personalizing algorithms (PAs), e.g., bandit or RL algorithms. The PA’s role is to learn user treatment
effects and assign personalized treatment over time. The following projects aim to infer if (i) the
digital interventions and (ii) the PAs used to assign them are effective at the individual level
in sequential experiments. These tasks are challenging due to heterogeneity across users and time,
biases due to the PA’s sequential adaptivity, the lack of mechanistic models for treatment effect, and
data’s noisiness. For (i), we provide the first guarantee for ITE in sequential experiments using
a non-parametric mixed-effect/latent factor model for the potential outcomes and nearest neighbor
(NN) estimators. We prove an ITE error of O(T"z+N") for each user at each time!'® and improve it
further to O(T~'+N~") with a doubly robust NN for non-adaptive experiments.['”! For (ii), we introduce
a methodology for assessing the personalization achieved by an online PA in non-Markovian
environments. We compare the rewards yielded by the online PA to those yielded by a baseline PA,
and provide its fundamental decomposition across three practical axes—time, covariates used by the PA
(states), and pre-study covariates. 18]

Next, I discuss estimation of heterogeneous treatment effects in RCTs.!'>! Via a case study on a drug
trial, we highlight the poor generalization of popular conditional average treatment effect models
(CATEm) due to low signal-to-noise ratio. We introduce a CATEm-based discovery procedure for
subgroups with heterogeneous treatment effects. The heterogeneity in subgroups discovered in the case
study surprisingly generalized to another independent trial, i.e., there were statistically significant
heterogeneous subgroup treatment effects after adjustment for multiple testing. In another work,/®!
we tackle unmeasured confounding in sequential observational studies (unknown treatment policy)
via exponential family models. We introduce a method to estimate unit-specific parameter with a
single p-dimensional sample per unit despite unobserved confounding. We provide a parameter
error of O((slogk)/p) when the parameters are s-sparse combination of k known vectors.

Statistical-computational trade-offs in overparameterized models My research also includes
work at the forefront of statistical learning theory. For missing and heterogeneous data, mixture
models and expectation-maximization (EM) are the default choice. EM is known to work well for
correctly specified models and provide ®(N~2) error in O(log N) steps with N samples. We provide
the first guarantee that EM behaves poorly with overparametrization: O(N 1) error in O(N'2)
steps.['1 191 We show the promise of the usually ignored Newton EM, which achieves the same error in
O(log N) steps.I>! On the other hand, the good generalization of overparameterized models in supervised
learning seems to contradict the bias-variance trade-off. We prove that the minimum description length
complexity undergoes a phase change from O(d) to O(log d) with d features as d grows larger than
N—and hence a good generalization is possible. Moreover, we show that the surprises with bias-variance
trade-off occur with poor estimators and disappear with regularized estimators.[1*]

2. Computationally efficient simulation methodologies

In a digital twin experiment in cardiology, scientists use a computational model for heart to simulate
personalized therapy response for arrhythmia.!'?! Such simulations often proceed in two stages: (I)
estimating smaller-scale (e.g., single-cell) models for each user via Bayesian inference followed by (II)
uncertainty propagation to the higher-scale (e.g., tissue or heart) models using complex simulators.



Similar simulations also arise in digital twin technology experiments for system design in energy sector
and internet of things. MCMC is a common choice for Bayesian inference in stage I, but its slow
convergence is a known bottleneck in high dimensions. In cardiology experiments, MCMC is typically
run for >10° iterations (2 CPU weeks) making stage I computationally expensive. In these experiments,
stage II is even more expensive as a single heart-level simulation takes > 5 CPU weeks. A common
approach for stage Il is to thin/compress the long MCMC chain from stage I. But, standard compression
procedures are known to degrade in high dimensions for integration and testing. I now summarize
my work that addresses these challenges using theory and methods for both MCMC and compression.

Fast compression algorithms in high dimensions. IID sampling and fast mixing MCMC suffer
from the poor error rate of @(N~z) for approximating function expectations with N points. Approaches
from quasi-Monte Carlo (including my work!”!), quadrature methods, coresets, and prototype search
provide improved error rates for low dimensional distributions, especially uniform on [0, 1]¢. However,
an effective solution for high dimensional distributions with unbounded support (like typical posterior
distributions) was unknown. We provide the first provable and practical strategy, kernel thinning
(KT),[1% 131 3 procedure that thins N points to N2 points with near-optimal O,(N~2) integration error
in reproducing kernel Hilbert spaces—a near-quadratic improvement over the ©(N~#) error with Nz
points—for distributions with sub-exponential tails on R%. We introduce a meta-procedure, Compress++"!
that speeds up generic thinning methods and makes KT’s runtime O(N). We build a compress-then-test
strategy using KT that is 100-200x faster than state of the art non-parametric hypothesis tests.*!

Fast MCMC algorithms in high dimensions. A thread of my research establishes the number
of iterations (mixing time) needed by popular MCMC algorithms to converge within error § for a
given approximately log-concave distribution in R?. We provide the first mixing time bound for
state-of-the-art Metropolized Hamiltonian Monte Carlo (HMC), introduce new MCMC algorithms,
and provide several insights en route: (i) We show that mixing time improves with the usage of
gradients as we move from metropolis random walk, to Langevin algorithms (LA) to HMC.[% 31 (ii) We
prove that the accept-reject correction step improves the mixing time of LA from O(3) to O(log 3)
(typically used in practice, this correction step is was often ignored in prior theoretical works).”®! (iii) We
illustrate that state-of-the-art interior point methods can be suitably adapted to design state-of-the-art
MCMLC for constrained sampling, demonstrating that sampling benefits from faster optimization
methods.!?! (iv) Finally, we provide simultaneous improvements to the mixing times of many MCMC
algorithms with poor initialization.!®!

3. Future directions

A principled end-to-end pipeline for sequential decision-making is one of my goals, toward which
my prior and ongoing research constitute important first steps. Below I outline some future research
directions that extend my research trajectory toward this goal. En route I envision many opportunities
to build new scientific collaborations across medicine, mobile health, and e-commerce.

Trade-offs between during-study and after-study objectives. = The two goals of sequential
experiments—during-study personalization and after-study causal inference—appear at odds
with each other. The latter requires continued exploration, while the former requires exploitation of



the information accumulated thus far. I plan to characterize the Pareto frontier curve for this trade-off
in the context of the two goals of sequential experiments as a critical step towards an end-to-end pipeline.

Inference in real-world environments. My work on counterfactual inferencel!¢]

in sequential
experiments provides a stepping stone to ITE inference and diagnostics in more complex settings.
It would be interesting to extend it to settings with temporal features (contextual bandits) and delayed
effects (Markov decision processes (MDPs)). A two-staged procedure for contextual bandits and MDPs
that involves parametric modeling refined using NN would be a natural starting point. I am also excited
to extend my work on personalization'®! to unit-level PA diagnostics using statistical approaches like

bootstrap to more general environments like longitudinal data that make minimal assumptions.

Algorithm design via affordable simulators. Computational stability, autonomous operation, and
learning speed make bandit algorithms the default choice of PA. However, this choice of PA is generally
misspecified. This misspecification is further exacerbated by the non-stationarity of the environment due
to real-time data and sensor constraints. Planning for these issues requires extensive simulations with
multiple PA candidates and data-inspired environments with varying misspecifications. I am excited
to tackle these challenges by (i) characterizing the optimal algorithm that meets the during- and
after-study objectives under the above constraints and (ii) building an affordable simulator to design
a robust algorithm via prototype simulations rather than exhaustive search.
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