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Pervasive digitization and affordable sensors have enabled personalized data collection at the user
level. These novel data streams coupled with machine learning (ML) enable decision-making about what
and when to deliver, that is personalized to users, by considering their behaviors and contexts. This
development is useful in many domains like medicine, mobile health, public policy, and e-commerce.
However, for reliable personalized decision-making, we need user-level predictions along with
uncertainty quantification for actionable quantities, e.g., confidence intervals for user-level
treatment effects of a drug in a clinical trial. Learning these quantities involves two fundamental
tasks: (1) Estimation and inference from data when a good mechanistic model of how the decision
affects a user is unavailable, like in medicine or computer systems; and (2)model-based simulations
when there is a known computational or stochastic model for the decision’s effect, e.g., in cardiology or
engineering systems. My research builds machine learning solutions for decision-making that address the
algorithmic, statistical and computational challenges associated with learning personalized quantities.

Overall, I take a multi-disciplinary approach to data science and bring together ideas from
computer science, electrical engineering, and statistics in collaboration with domain experts to
develop statistical ML solutions for personalized decision-making in real-world problems.(i) My research
spans across algorithms in optimization and random sampling, causal inference, reinforcement learning
(RL), Bayesian inference, and high-dimensional statistics. On the one hand, my background in computer
science and electrical engineering is critical in designing and analyzing efficient algorithms and
methods that work on a range of problems with various scales. On the other hand, my training in
statistics helps me design statistical models for the problem at hand, reason about the amount of data
needed, and quantify uncertainty in the predictions from these algorithms. I now provide an overview
of the challenges in the two tasks that my research addresses.

(1) Estimation and inference. In settings where we do not have a good mechanistic model of how the
decision/treatment affects the user, I design algorithms that provide user-level estimates with an accurate
measure of statistical uncertainty, even with a small sample size and are also computationally efficient
thereby well suited for big data settings. My research provides these estimates for data is collected in
different ways, including randomized experiments (like clinical trials or A/B testing), observational
studies (like with medical records), and sequential experiments on digital platforms (like adaptive trials
in mobile health). For personalized inference with such data, conventional ML approaches face multiple
statistical challenges. In real-world clinical trials, sample size is small by design due to monetary and
other risk constraints. With small sample sizes, complex methods overfit while simple methods do not
provide a good user-level fit. In observational studies, unknown treatment mechanism (e.g., how the
medicine was chosen) introduces non-trivial biases for user-level estimates. In sequential experiments,
online adaptive algorithms like bandits enable the personalization of treatments to user behavior and
context. However, the feedback from these algorithms is known to render classical approaches, e.g.,
even least squares with adaptively collected data with linear models, unreliable due to inaccurate
uncertainty estimates. My research builds provable and practical solutions to tackle these challenges.

(2) Model-based simulations. With a known mechanistic model for how a certain decision/treatment
affects a user, computational challenges arise when learning and quantifying and propagating
uncertainty in the estimates via high-dimensional computer simulations. I provide provable guarantees
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on popular uncertainty quantification methods (Markov chain Monte Carlo (MCMC)) in high dimensions,
design new computationally efficient variants, and new compression algorithms that provide provably
huge speed ups for uncertainty propagation to expensive downstream tasks. For example, computational
cardiologists want to predict personalized disease progression and therapy response for a given user via
non-invasive digital simulations (without running a trial) using multi-scale models. Such simulations
often proceed in two stages. First, one estimates smaller-scale (e.g., single-cell) models for a given user
along with uncertainty quantification via random sampling with MCMC. Second, this uncertainty
is propagated to the higher-scale (e.g., tissue or heart) models using complex simulators. Both stages
are known to be computationally daunting due to challenges (a) with MCMC convergence in high
dimensions and (b) the very high dimensionality of the simulators. E.g., to model the effect of calcium
signaling dysregulation on heartbeats, MCMC for generating a million cell-model samples might take 2
CPU weeks, while a single heart-level simulation might take 4 CPU weeks. Such challenges also arise
in system design via complex multi-scale simulations in many engineering applications like aerospace
system, autonomous driving, power plants, and the upcoming digital twin technology. My research
provides solutions to the computational bottlenecks in both stages.

Here is a brief overview of my research for personalized decision-making in three different settings:
sequentially adaptive experiments, randomized controlled trials (RCT), and model-based simulations.

(S1) Sequentially adaptive experiments with RL: I develop strategies to adjust the biases inherent
to adaptive trials in mobile health. My work designs algorithms for estimating how effective
is the treatment at user-level, referred to as individual treatment effects (ITE) and assessing the
personalization achieved by the RL algorithm used in the trial.[16, 17, 18]

(S2) Heterogeneity in RCT: As noted earlier, ML models provide unreliable estimates of ITE for
real-world RCTs in medicine due to limited sample size (and hence low signal-to-noise ratio). I
introduce a calibration and stability based discovery procedure to reliably estimate the heterogeneity
in treatment’s effect in various subgroups in the study.[15]

(S3) Simulationswith computationalmodels: Mywork builds new bridges between optimization and
sampling for design and analysis for fast MCMCmethods[2, 8, 3] and discrepancy and compression to
design effective uncertainty propagation methods[12, 13, 7] that collectively speed up computations
in complex high-dimensional simulation systems.

Applications and impact. My research involves collaborations with specific goals for real-world
decision-making and has immediate impact in healthcare. Methods from (S1) help health scientists
design effective mobile apps to assist users in achieving physical fitness and managing stress and
addiction. Approaches from (S2) help doctors estimate if a drug is very effective for some clinically
interpretable patient subgroup. My work in (S3) speeds up personalized simulations in digital twin heart
experiments. Finally, I helped build forecasting models in a non-profit collaboration for limited PPE
allocation to needy hospitals during the COVID pandemic.[1]

Besides healthcare, my research is also applicable for decision-making in engineering systems,
recommender systems, and problems in public policy and social sciences. I intend to continue cutting-edge
interdisciplinary research and develop principled approaches to solve real-world problems. I now
summarize my research in two broad threads: data efficient estimation and inference and computation
efficient model-based simulations.
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1. Data efficient estimation and inference
My first research thread introduces theory and methods for reliable and personalized recommendations
with novel data streams and tackle several known challenges in sequential experiments and RCTs.

Counterfactual inference and personalization. Sequential experiments in mobile health and
digital platforms aim to provide personalized treatments to 𝑁 users over 𝑇 time points using online
personalizing algorithms (PAs), e.g., bandit or RL algorithms. The PA’s role is to learn user treatment
effects and assign personalized treatment over time. The following projects aim to infer if (i) the digital
treatments and (ii) the PAs used to assign them are effective at the individual level in sequential
experiments. These tasks are challenging due to heterogeneity across users and time, biases due to the
PA’s sequential adaptivity, the lack of mechanistic models for treatment effect, and data’s noisiness. For
(i), we provide the first inference guarantee for user-level effects in sequential experiments,
namely a non-asymptotic error bound and an asymptotic confidence interval. We use the popular ML
approach of nearest neighbors to build our estimate and prove the guarantee under mild assumptions
and a very flexible statistical model (non-parametric mixed-effect/latent factor model). We prove that our
estimate admits a squared error of 𝑂(𝑇 − 1

2 +𝑁 −1) for each user at each time[16]. We improve it further to
𝑂(𝑇 −1+𝑁 −1) with a new improved variant of nearest neighbors that we refer to as doubly robust nearest
neighbors.[17] We use these estimators in mobile health studies to estimate if the mobile notification was
useful in helping users become physically more active.

For (ii), i.e., to estimate if the PA is in fact personalizing treatments to the user, we introduce a
methodology for assessing the personalization achieved by an online PA in non-Markovian
environments. We compare the rewards yielded by the online PA to those yielded by a baseline PA in
terms of value function difference, and provide its fundamental decomposition across three practical
axes—time, covariates used by the PA (states), and pre-study covariates.[18]

Next, I discuss estimation of heterogeneous treatment effects in RCTs.[15] Via a case study on a drug
trial, we highlight the poor generalization of popular ML-based conditional average treatment effect
models (CATEm) due to low signal-to-noise ratio. We introduce a CATEm-based discovery procedure
for subgroups with heterogeneous treatment effects. The heterogeneity in subgroups discovered in
the case study surprisingly generalized to another independent trial, i.e., there were statistically
significant heterogeneous subgroup treatment effects after adjustment for multiple testing. In another
work,[6] we tackle unmeasured confounding in sequential observational studies (unknown treatment
policy) via exponential family models. We introduce a method to estimate unit-specific parameter
with a single 𝑝-dimensional sample per unit despite unobserved confounding. We provide a
parameter error of 𝑂((𝑠 log 𝑘)/𝑝) when the parameters are 𝑠-sparse combination of 𝑘 known vectors.

Statistical-computational trade-offs in overparameterized models My research also includes
work at the forefront of statistical learning theory. For missing and heterogeneous data, mixture
models and expectation-maximization (EM) are the default choice. EM is known to work well for
correctly specified models and provide Θ(𝑁 − 1

2 ) error in 𝑂(log𝑁 ) steps with 𝑁 samples. We provide
the first guarantee that EM behaves poorly with overparametrization: Θ(𝑁 − 1

4 ) error in 𝑂(𝑁 1
2 )

steps.[11, 10] We show the promise of the usually ignored Newton EM, which achieves the same error in
𝑂(log𝑁 ) steps.[5] On the other hand, the good generalization of overparameterized models in supervised
learning seems to contradict the bias-variance trade-off. We prove that the minimum description length
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complexity undergoes a phase change from 𝑂(𝑑) to 𝑂(log 𝑑) with 𝑑 features as 𝑑 grows larger than
𝑁—and hence a good generalization is possible. Moreover, we show that the surprises with bias-variance
trade-off occur with poor estimators and disappear with regularized estimators.[14]

2. Computation efficient model-based simulations
In many applications in engineering, healthcare, and other domains, complex multi-scale simulations
are used for system design. For example, in a digital twin experiment in cardiology, scientists use a
computational model for heart to simulate a heartbeat to better understand the disease arrhythmia.[12]

Such simulations often proceed in two stages: (I) estimating smaller-scale (e.g., single-cell) models for
each user via Bayesian inference followed by (II) uncertainty propagation to the higher-scale (e.g., tissue
or heart) models using complex simulators. MCMC is a common choice for Bayesian inference in stage I,
but its slow convergence is a known bottleneck in high dimensions. For example, in the cardiology
experiments, MCMC is typically run for ≥106 iterations (2 CPU weeks) making stage I computationally
expensive. In these experiments, stage II is even more expensive as a single heart-level simulation takes
≥ 5 CPU weeks. A common approach for stage II is to thin/compress the long MCMC chain from stage I.
But, standard compression procedures are known to degrade in high dimensions for integration
and testing. I now summarize my work that addresses these challenges using theory and methods for
both MCMC and compression.

Fast compression algorithms in high dimensions. IID sampling and fast mixing MCMC suffer
from the poor error rate of Θ(𝑁 − 1

2 ) for approximating function expectations with 𝑁 points. Approaches
from coresets, quadrature methods, quasi-Monte Carlo (including my work[9]), and prototype search
provide improved error rates for low dimensional distributions, especially uniform on [0, 1]𝑑 . However,
an effective solution for high dimensional distributions with unbounded support (like typical posterior
distributions) was unknown. We provide the first provable and practical strategy, kernel thinning
(KT),[12, 13] a procedure that thins 𝑁 points to 𝑁 1

2 points with near-optimal 𝑂𝑑(𝑁 − 1
2 ) integration error

in reproducing kernel Hilbert spaces—a near-quadratic improvement over the Θ(𝑁 − 1
4 ) error with 𝑁 1

2

points—for distributions with sub-exponential tails on ℝ𝑑 . We introduce a meta-procedure, Compress++[7]

that speeds up generic thinning methods and makes KT’s runtime 𝑂(𝑁 ). We build a compress-then-test
strategy using KT that is 100-200x faster than state of the art non-parametric hypothesis tests.[4]

Fast MCMC algorithms in high dimensions. A thread of my research establishes the number
of iterations (mixing time) needed by popular MCMC algorithms to converge within error 𝛿 for a
given approximately log-concave distribution in ℝ𝑑 . We provide the first mixing time bound for
state-of-the-art Metropolized Hamiltonian Monte Carlo (HMC), introduce new MCMC algorithms,
and provide several insights en route: (i) We show that mixing time improves with the usage of
gradients as we move from metropolis random walk, to Langevin algorithms (LA) to HMC.[8, 3] (ii) We
prove that the accept-reject correction step improves the mixing time of LA from 𝑂( 1𝛿 ) to 𝑂(log 1

𝛿 )
(typically used in practice, this correction step is was often ignored in prior theoretical works).[8] (iii) We
illustrate that state-of-the-art interior point methods can be suitably adapted to design state-of-the-art
MCMC for constrained sampling, demonstrating that sampling benefits from faster optimization
methods.[2] (iv) Finally, we provide simultaneous improvements to the mixing times of many MCMC
algorithms with poor initialization.[3]
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3. Future directions
A principled end-to-end pipeline for sequential decision-making is one of my goals, toward which
my prior and ongoing research constitute important first steps. This goal requires the development of
algorithms that take into account multiple objectives, e.g., personalize the decisions to users during the
trial (low regret during study) as well as provide a reliable estimate of whether the decisions are working
(small confidence intervals after study). Moreover, these algorithms and inference methods need to plan
and account for the dynamic nature of users caused by the decisions (effectively a transfer learning task),
e.g., in mobile health, the user behavior changes due to repeated mobile notifications. Below I outline
some future research directions that extend my research trajectory toward this goal. En route I envision
many opportunities to build new scientific collaborations in both engineering and healthcare.

Speeding up empirical risk minimization (ERM). Compressed datasets would be directly useful
for speeding up ML algorithms for ERM. For example, runtime of kernel-based ERM using gradient
descent with 𝑁 points can be reduces from order 𝑁 3 to order 𝑁 3/2 if the 𝑁 data points are compressed
to 𝑁 1/2 points. To avoid the larger generalization error caused by naive compression, I am excited to
extend the procedures like kernel thinning and compress++[12, 13, 7] to supervised learning settings. Such
effective extensions for compressing labeled datasets would also be useful in transfer learning tasks
where a compressed dataset for earlier tasks is retained while fine tuning neural networks for future tasks.

Algorithm design via affordable simulators. Computational stability, autonomous operation,
and learning speed (bias-variance tradeoff) make bandit algorithms the default choice of PA in many
experimental studies. However this choice is often misspecified when the underlying environment is
not a bandit and can lead to sub-optimal performance. This sub-optimality can be further exacerbated by
the non-stationarity of the environment due to real-time data and sensor constraints. However, even
characterization of the optimal algorithm in idealized settings is a non-trivial task when dealing with
multiple objectives. For example in adaptive trials in healthcare, the two goals can be during-study
personalization and after-study causal inference. And these goals can appear at odds with each
other. Typically inference requires continued exploration, while personalization translates to low regret
which in turn requires exploitation of the information accumulated thus far. For a principled algorithm
design, first I plan to characterize the Pareto frontier curve for this trade-off when dealing with multiple
goals in sequential experiments and design algorithms that can achieve it. To design a robust algorithm
that performs well even under various misspecifications issues that arise in practice, typically extensive
simulations with multiple PA candidates and data-inspired environments need to be conducted. I plan to
make this step computationally feasible by building an affordable simulator via prototype simulations
rather than exhaustive search.

Inference in real-world environments. My work on counterfactual inference[16] in sequential
experiments provides a stepping stone to ITE inference and diagnostics in more complex settings.
It would be interesting to extend it to settings with temporal features (contextual bandits) and delayed
effects (Markov decision processes (MDPs)). A two-staged procedure for contextual bandits andMDPs
that involves parametric modeling refined using nearest neighbors would be a natural starting point.
Furthermore, I am also excited to extend my work on personalization[18] to unit-level PA diagnostics
using statistical approaches like bootstrap to more general RL environments like longitudinal data that
make minimal assumptions.
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