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Random Sampling

• Consider the problem of drawing random samples from a 
given density (known up-to proportionality) 
 
 

X1, X2, . . . , Xm ⇠ ⇡⇤



Applications

• Probabilities of Events  
• Rare Event Simulations  
• Bayesian Posterior Mean 
• Volume Computation (polynomial time)

X1, X2, . . . , Xm ⇠ ⇡⇤

E[g(X)] =

Z
g(x)⇡⇤(x)dx ⇡ 1

m

mX

i=1

g(Xi)



Applications

• Probabilities of Events  
• Rare Event Simulations  
• Bayesian Posterior Mean 
• Volume Computation (polynomial time)

X1, X2, . . . , Xm ⇠ ⇡⇤

E[g(X)] =

Z
g(x)⇡⇤(x)dx ⇡ 1

m

mX

i=1

g(Xi)



Applications

• Zeroth order optimization: Polynomial time 
algorithms based on Random Walk 

• Convex optimization: Bertsimas and Vempala 2004, Kalai 
and Vempala 2006, Kannan and Narayanan 2012, Hazan et 
al. 2015 

• Non-convex optimization, Simulated Annealing: Aarts 
and Korst 1989, Rakhlin et al. 2015

min
x2K

g(x)



Uniform Sampling on Polytopes

n linear constraints

d dimensions

n > d

X =
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Uniform Sampling on Polytopes

• Integration of arbitrary functions under linear constraints


• Mixed Integer Programming


• Sampling non negative integer matrices with specified 
row and column sums (contingency tables)


• Connections between optimization and sampling 
algorithms



Goal
Given A and b, and a starting distribution     ,


design an MCMC algorithm 


that generates a random sample from uniform distribution on 
 

in as few steps as possible!


Convergence Rate: Mixing time for total variation
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Markov Chain Monte Carlo

• Design a Markov Chain which can converge to the 
desired distribution  
• Metropolis Hastings Algorithms (1950s), Gibbs Sampling (1980s)


• Simulate the Markov chain for several steps to get a 
sample



Markov Chain Monte Carlo

• Sampling on convex sets: Ball Walk (Lovász et al. 1990), 
Hit-and-run (Smith et al. 1993, Lovász 1999),


• Sampling on polytopes: Dikin Walk (Kannan and Hariharan 
2012, Hariharan 2015, Sachdeva and Vishnoi 2016), Geodesic 
Walk (Lee and Vempala 2016)



Ball Walk [Lovász and Simonovits 1990]

• Propose a uniform point in a ball around x


• reject if outside the polytope, else move to it
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Ball Walk [Lovász and Simonovits 1990]

• Many rejections near sharp corners



Ball Walk [Lovász and Simonovits 1990]

• Mixing time depends on conditioning of the set

Rmin

Rmax

#steps = O
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R2
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◆

per step cost = nd

Can be 
exponential in d



May be a variable shape ellipsoid?

z

z



• Proposal 

• Another variant 

• Accept Reject: 
 
 

Dikin Walk [Kannan and Narayanan 2012]
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• Proposal 
 
 
 
 
 
 
 
 

Dikin Walk [Kannan and Narayanan 2012]
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Log Barrier Method 
(Optimization) 

[Dikin 1967, Nemirovski 
1990]
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Upper bounds 

Ball Walk Dikin Walk ? ?

#Steps

Per Step 
Cost

nd

nd

n = #constraints 
d = #dimensions 
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Slow mixing of Dikin Walk
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–Lovász’s Lemma

“If any two points that are      apart have    overlap 
in their transition regions, then the chain mixes in                  

steps.” 

�

(Distance and overlap measured in appropriately)
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–Lovász’s Lemma

“If any two points that are      apart have    overlap 
in their transition regions, then the chain mixes in                  

steps.” 
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For any fixed overlap    , we want far away points to 
have      overlapping regions, and hence large 

ellipsoids (contained within the polytope) are useful.
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Improving Dikin Walk

Dikin Proposal
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Importance weighting of constraints



Log Barrier Method 
[Dikin 1967, Nemirovski 1990]
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[Kannan and Narayanan 2012]

Improving Dikin Walk



Sampling meets optimization (again!!)

Volumetric Barrier Method 
[Vaidya 1993]

[Chen, D., Wainwright and Yu 2017]

Log Barrier Method 
[Dikin 1967, Nemirovski 1990]
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[Kannan and Narayanan 2012]

Vaidya Proposal
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Vaidya Walk [Chen, D., Wainwright, Yu 2017]
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Convergence Rates
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Walk

Vaidya 
Walk
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Convergence Rates
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Dikin Walk vs Vaidya Walk
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Dikin 
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Small number of constraints: No Winner!
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Dikin 
Walk
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Vaidya walk wins!
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Dikin Walk vs Vaidya Walk
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Polytope approximation to Circle

#constraints = 5 #constraints = 8
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Can we improve further?

Log Barrier Method 
[Dikin 1967, Nemeirovski 1990]

Vaidya’s Volumetric 
Barrier Method 

[Vaidya 1993]
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John Walk

Log Barrier Method 
[Dikin 1967, Nemirovski 1990]

Vaidya’s Volumetric 
Barrier Method 

[Vaidya 1993]
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John Proposal
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jx,i = convex program

[Chen, D., Wainwright, Yu 2017][Kannan and Narayanan, 2012]

John’s Ellipsoidal 
Algorithm 

[Fritz John 1948, Lee and 
Sidford 2015]



Mixing Times
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Mixing Times
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Conjecture
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– Numerical Experiments

“ 
For the John walk, the log factors are bottleneck in 

practice. 
’’



Proof Idea

• Proof relies on Lovasz’s Lemma


• Need to establish that near by points have similar 
transition distributions


• Have to show that the weighted matrices are sufficiently 
smooth — use of weights makes it involved



Summary

Optimization Sampling

Log Barrier Method

1967, 1980s

Dikin Walk

2012

Volumetric Barrier 
Method


1993

Vaidya Walk

2017

John Ellipsoidal 
Algorithm


1948, 2015 

John Walk

2017

faster faster


