Fast MCMC Algorithms on Polytopes

Raaz Dwivedi, Department of EECS

Joint work with

Martin Wainwright

Bin Yu

Random Sampling

- Consider the problem of drawing random samples from a given density (known up-to proportionality)

$$
X_{1}, X_{2}, \ldots, X_{m} \sim \pi^{*}
$$

Applications

$$
\begin{gathered}
\mathbb{E}[g(X)]=\int g(x) \pi^{*}(x) d x \approx \frac{1}{m} \sum_{i=1}^{m} g\left(X_{i}\right) \\
X_{1}, X_{2}, \ldots, X_{m} \sim \pi^{*}
\end{gathered}
$$

- Probabilities of Events
- Rare Event Simulations
- Bayesian Posterior Mean
- Volume Computation (polynomial time)

Applications

$$
\mathbb{E}[g(X)]=\int g(x) \pi^{*}(x) d x \approx \frac{1}{m} \sum_{i=1}^{m} g\left(X_{i}\right)
$$

$$
X_{1}, X_{2}, \ldots, X_{m} \sim \pi^{*}
$$

- Probabilities of Events
- Rare Event Simulations
- Bayesian Posterior Mean
- Volume Computation (polynomial time)

Applications

$$
\min _{x \in \mathcal{K}} g(x)
$$

- Zeroth order optimization: Polynomial time algorithms based on Random Walk
- Convex optimization: Bertsimas and Vempala 2004, Kalai and Vempala 2006, Kannan and Narayanan 2012, Hazan et al. 2015
- Non-convex optimization, Simulated Annealing: Aarts and Korst 1989, Rakhlin et al. 2015

Uniform Sampling on Polytopes

$$
\mathcal{X}=\left\{x \in \mathbb{R}^{d} \mid A x \leq b\right\}
$$

n linear constraints
d dimensions
$n>d$

Tetrahedron

Octahedron

Cube

Uniform Sampling on Polytopes

- Integration of arbitrary functions under linear constraints
- Mixed Integer Programming
- Sampling non negative integer matrices with specified row and column sums (contingency tables)
- Connections between optimization and sampling algorithms

Goal

Given A and b , and a starting distribution μ_{0},

 design an MCMC algorithmthat generates a random sample from uniform distribution on

$$
\mathcal{X}=\left\{x \in \mathbb{R}^{d} \mid A x \leq b\right\}
$$

in as few steps as possible!
Convergence Rate: Mixing time for total variation

$$
\left\|\mu_{0} P^{k}-\pi^{*}\right\|_{\mathrm{TV}} \leq \epsilon
$$

Markov Chain Monte Carlo

- Design a Markov Chain which can converge to the desired distribution
- Metropolis Hastings Algorithms (1950s), Gibbs Sampling (1980s)
- Simulate the Markov chain for several steps to get a sample

Markov Chain Monte Carlo

- Sampling on convex sets: Ball Walk (Lovász et al. 1990), Hit-and-run (Smith et al. 1993, Lovász 1999),
- Sampling on polytopes: Dikin Walk (Kannan and Hariharan 2012, Hariharan 2015, Sachdeva and Vishnoi 2016), Geodesic Walk (Lee and Vempala 2016)

Ball Walk [Lovász and Simonovits 1990]

- Propose a uniform point in a ball around x
- reject if outside the polytope, else move to it

Ball Walk [Lovász and Simonovits 1990]

- Many rejections near sharp corners

Ball Walk [Lovász and Simonovits 1990]

- Mixing time depends on conditioning of the set

Can be
$\#$ steps $=\mathcal{O}\left(d^{2} \frac{R_{\max }^{2}}{R_{\min }^{2}}\right)$
per step cost $=n d$

May be a variable shape ellipsoid?

Dikin Walk [Kannan and Narayanan 2012]

$$
\begin{aligned}
& \text { - Proposal } \quad z \sim \mathcal{N}\left(x, \frac{r^{2}}{d} D_{x}^{-1}\right) \\
& \text { - Another variant } z \sim \mathbb{U}\left[D_{x}(r)\right] \\
& \text { - Accept Reject: } \\
& \qquad \mathbb{P}(\text { accept } z)=\min \left\{1, \frac{P(z \rightarrow x)}{P(x \rightarrow z)}\right\}
\end{aligned}
$$

Dikin Walk [Kannan and Narayanan 2012]

Upper bounds

Ball Walk Dikin Walk
$n d$
n = \#constraints d = \#dimensions

Per Step
$n d$
$n d^{2}$ n > d

Slow mixing of Dikin Walk

"If any two points that are Δ apart have ρ overlap in their transition regions, then the chain mixes in
 $\mathcal{O}\left(\frac{1}{\Delta^{2} \rho^{2}}\right)$ steps."

-Lovász's Lemma
"If any two points that are Δ apart have ρ overlap in their transition regions, then the chain mixes in

$$
\mathcal{O}\left(\frac{1}{\Delta^{2} \rho^{2}}\right) \text { steps." }
$$

-Lovász's Lemma

For any fixed overlap ρ, we want far away points to have ρ overlapping regions, and hence large ellipsoids (contained within the polytope) are useful.

Improving Dikin Walk

Importance weighting of constraints

$$
D_{x}=\sum_{i=1}^{n} \frac{a_{i} a_{i}^{\top}}{\left(b_{i}-a_{i}^{\top} x\right)^{2}}
$$

$$
\sum \sum_{i=1}^{n} w_{i}(x) \frac{a_{i} a_{i}^{\top}}{\left(b_{i}-a_{i}^{\top} x\right)^{2}}
$$

Improving Dikin Walk

[Kannan and Narayanan 2012]

Dikin Proposal

$$
\begin{aligned}
z & \sim \mathcal{N}\left(x, \frac{\mathrm{r}^{2}}{\mathrm{~d}} \mathrm{D}_{\mathrm{x}}^{-1}\right) \\
D_{x} & =\sum_{i=1}^{n} \frac{a_{i} a_{i}^{\top}}{\left(b_{i}-a_{i}^{\top} x\right)^{2}}
\end{aligned}
$$

Log Barrier Method

 [Dikin 1967, Nemirovski 1990]
Sampling meets optimization (again!!)

[Kannan and Narayanan 2012]
Dikin Proposal
$z \sim \mathcal{N}\left(x, \frac{\mathrm{r}^{2}}{\mathrm{~d}} \mathrm{D}_{\mathrm{x}}^{-1}\right)$

$$
D_{x}=\sum_{i=1}^{n} \frac{a_{i} a_{i}^{\top}}{\left(b_{i}-a_{i}^{\top} x\right)^{2}}
$$

Log Barrier Method [Dikin 1967, Nemirovski 1990]
[Chen, D., Wainwright and Yu 2017]
Vaidya Proposal

$$
\begin{aligned}
z & \sim \mathcal{N}\left(x, \frac{r^{2}}{\sqrt{n d}} V_{x}^{-1}\right) \\
V_{x} & =\sum_{i=1}^{n}\left(\sigma_{x, i}+\frac{d}{n}\right) \frac{a_{i} a_{i}^{\top}}{\left(b_{i}-a_{i}^{\top} x\right)^{2}} \\
\sigma_{x, i} & =\frac{a_{i}^{\top} D_{x}^{-1} a_{i}}{\left(b_{i}-a_{i}^{\top} x\right)^{2}}
\end{aligned}
$$

Volumetric Barrier Method [Vaidya 1993]

Vaidya Walk [Chen, D., Wainwright, Yu 2017]

Convergence Rates

Ball Walk

Dikin
 Walk

Vaidya Walk
\#Steps $\quad d^{2} \frac{R_{\max }^{2}}{R_{\min }^{2}} \quad n d \quad n^{0.5} d^{1.5}$

Per Step Cost
n constraints
d dimensions

$$
n>d
$$

Convergence Rates

Ball Walk

Dikin Walk

Vaidya Walk
$n^{0.5} d^{1.5}$

Per Step Cost
$n d$
$n d^{2} \quad n d^{2}$
n constraints
d dimensions

$$
n>d
$$

Dikin Walk vs Vaidya Walk

\#dimensions = $\mathbf{2}$

Dikin Walk vs Vaidya Walk

\#constraints = 64

$$
k=10
$$

Dikin
Walk

\#experiments = $\mathbf{2 0 0}$
$\mathrm{k}=$ \#iterations

Dikin Walk vs Vaidya Walk

\#constraints = 64
$k=10$

Dikin
Walk
\#experiments = 200

$$
k=100
$$

Vaidya Walk

Dikin Walk vs Vaidya Walk

\#constraints = 64
$k=10$

Small number of constraints: No Winner!

\#constraints = 64
\#experiments = $\mathbf{2 0 0}$
$\mathrm{k}=$ \#iterations

Dikin Walk

$$
k=10
$$

Dikin Walk vs Vaidya Walk

\#constraints = 2048

Dikin Walk vs Vaidya Walk

\#constraints = 2048
$k=10$
\#experiments = 200
$\mathrm{k}=$ \#iterations

Dikin

Walk

Dikin Walk vs Vaidya Walk

\#constraints = 2048
$k=10$

Dikin

Walk

Vaidya Walk
\#experiments = 200
k = \#iterations
$k=100$

Vaidya walk wins!

\#experiments = 200
k = \#iterations
\#constraints = 2048
$k=10$

Dikin

 Walk

Dikin Walk vs Vaidya Walk

$$
\mathcal{O}(n d) \quad \text { vs } \quad \mathcal{O}\left(n^{0.5} d^{1.5}\right)
$$

Polytope approximation to Circle

\#constraints = 5

\#constraints = 8

\#constraints
 $$
=64
$$

Vaidya Walk

Can we improve further?

[Kannan and Narayanan, 2012]

Dikin Proposal
$z \sim \mathcal{N}\left(x, \frac{\mathrm{r}^{2}}{\mathrm{~d}} \mathrm{D}_{\mathrm{x}}^{-1}\right)$

$$
D_{x}=\sum_{i=1}^{n} \frac{a_{i} a_{i}^{\top}}{\left(b_{i}-a_{i}^{\top} x\right)^{2}}
$$

$$
\begin{aligned}
z & \sim \mathcal{N}\left(x, \frac{r^{2}}{\sqrt{n d}} V_{x}^{-1}\right) \\
V_{x} & =\sum_{i=1}^{n}\left(\sigma_{x, i}+\frac{d}{n}\right) \frac{a_{i} a_{i}^{\top}}{\left(b_{i}-a_{i}^{\top} x\right)^{2}} \\
\sigma_{x, i} & =\frac{a_{i}^{\top} D_{x}^{-1} a_{i}}{\left(b_{i}-a_{i}^{\top} x\right)^{2}}
\end{aligned}
$$

Vaidya's Volumetric

 Barrier Method [Vaidya 1993]
John Walk

[Kannan and Narayanan, 2012]

[Chen, D., Wainwright, Yu 2017]

Dikin Proposal
$z \sim \mathcal{N}\left(x, \frac{\mathrm{r}^{2}}{\mathrm{~d}} \mathrm{D}_{\mathrm{x}}^{-1}\right)$
$D_{x}=\sum_{i=1}^{n} \frac{a_{i} a_{i}^{\top}}{\left(b_{i}-a_{i}^{\top} x\right)^{2}}$

$$
\begin{array}{rlrl}
& \text { Vaidya Proposal } & \text { John Proposal } \\
z & \sim \mathcal{N}\left(x, \frac{r^{2}}{\sqrt{n d}} V_{x}^{-1}\right) & z & \sim \mathcal{N}\left(x, \frac{r^{2}}{d^{1.5}} J_{x}^{-1}\right) \\
V_{x} & =\sum_{i=1}^{n}\left(\sigma_{x, i}+\frac{d}{n}\right) \frac{a_{i} a_{i}^{\top}}{\left(b_{i}-a_{i}^{\top} x\right)^{2}} & J_{x} & =\sum_{i=1}^{n} j_{x, i} \frac{a_{i} a_{i}^{\top}}{\left(b_{i}-a_{i}^{\top} x\right)^{2}} \\
\sigma_{x, i} & =\frac{a_{i}^{\top} D_{x}^{-1} a_{i}}{\left(b_{i}-a_{i}^{\top} x\right)^{2}} & j_{x, i} & =\text { convex program }
\end{array}
$$

Vaidya Proposal

Vaidya's Volumetric Barrier Method [Vaidya 1993]

John's Ellipsoidal Algorithm
[Fritz John 1948, Lee and Sidford 2015]

Mixing Times

n = \#constraints
 d = \#dimensions $\mathrm{n}>\mathrm{d}$

	Dikin Walk	Vaidya Walk	John Walk
\#Steps	$n d$	$n^{0.5} d^{1.5}$	$d^{2.5} \log ^{4} \frac{n}{d}$
Per Step Cost			

Mixing Times

n = \#constraints
 d = \#dimensions $\mathrm{n}>\mathrm{d}$

Conjecture

n = \#constraints
 d = \#dimensions n > d

	Dikin Walk	Vaidya Walk	John Walk
\#Steps	$n d$	$n^{0.5} d^{1.5}$	$d^{2} \log ^{c}\left(\frac{n}{d}\right)$
Per Step Cost	$n d^{2}$	$n d^{2}$	$n d^{2} \log ^{2} n$

For the John walk, the log factors are bottleneck in practice.

- Numerical Experiments

Proof Idea

- Proof relies on Lovasz's Lemma
- Need to establish that near by points have similar transition distributions
- Have to show that the weighted matrices are sufficiently smooth - use of weights makes it involved

Summary

faster

