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Self-driving car Financial markets

Precision medicineJustice systems

Advances of machine learning

The explosion in data 
abundance and the 
compute power is 
fueling the increase in 
number of complex ML 
models and algorithms 
and the advent of ML in 
high-stakes domains



Which model/algorithm to prefer?
Judgment calls become critical and we need principled approaches to gather 
empirical and theoretical evidence to inform decision making

Supervised 
learning

Sampling methods

Unsupervised 
learning

Causal inference

Blessed with hold-out accuracy

This dissertation provides 
principled approaches 

for choice making where hold-out 
accuracy is not readily available
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Drawing samples from probability distributions: A fundamental task!

Monte Carlo simulation  
(Digital Heart Experiments)

Generative modeling  
(generating natural scenarios)

Bayesian inference 
(Uncertainty quantification)

Numerical integration 
(solving complex PDEs)



Digital heart experiments in computational cardiology

• Digital twin heart experiments try to simulate patient’s response to various 
therapies in a non-invasive way 

• Single-cell calcium signaling model a building block for the tissue- and 
heart-level models

*Picture credits: Google



Single-cell model

• Single-cell calcium signaling modeled via ODEs, and unknown parameters 
inferred from observed data using a Bayesian set-up

*Picture credits: Google, Hinch et al. 2004



Organ-level modeling

• Single-cell model then passed to various tissue and organ-level simulators 
that take 1000s of CPU hours for single computation

*Picture credits: Google, Hinch et al. 2004



Estimate single-cell model parameters 

How to draw random samples from the 
posterior? 

 
  

(  = single cell parameters)
θ1, θ2, …, θn ∼ p⋆

θ

Sampling 
methods
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Estimate single-cell model parameters 

How to draw random samples from the 
posterior? 

 
  

(  = single cell parameters)
θ1, θ2, …, θn ∼ p⋆

θ

Estimate effect of therapy at organ-level 
 

 

 = Heart simulator takes 1000s of hours 
 

How to compress the points to size  while 

ensuring  ?

#[g(θ)] = ∫ g(θ)p⋆(θ)dθ ≈ 1
n

n

∑
i=1

g(θi)

g

t ≪ n
1
n

n

∑
i=1

g(θi) ≈ 1
t

t

∑
j=1

g(θ̃j)

Sampling 
methods

Thinning 
methods



Random sampling

• Numerous sampling algorithms proposed, Markov chain Monte Carlo 
(MCMC) being the most popular 

• MCMC method = Set up a Markov chain that converges to the target 
distribution  as number of steps go to p⋆ ∞

θ1, θ2, …, θn ∼ p⋆

1. How many steps do we need to simulate the chain for? 

2. How do we tune the Markov chain for fast convergence?



Thinning/compression

• Commonly used: Standard thinning—-choose  points uniformly at 
random, but approximation error gets worse quickly as  reduces 

• Other fancier methods: Do not apply to general enough function class

t
t

 for 
1
n

n

∑
i=1

g(θi) ≈ 1
t

t

∑
j=1

g(θ̃j) t ≪ n

1. How to thin without losing information?  

2. How to ensure validity for rich enough function class?



Explicit user-friendly guarantees 
for MCMC methods

Yuansi Chen Martin Wainwright Bin Yu

Joint work with



• Find mode of the density (or MAP) 
          
 
 
 
 

• Gradient descent 
                

x⋆ ← arg max p⋆ = arg min f

xk = xk−1 − h∇f(xk−1)

Sampling versus optimization
• Draw samples from the density 

                  
 
 

• Unadjusted Langevin algorithm (ULA) 
                                                                  
                                              

X ∼ p⋆ ∝ e−f

Xk = Xk−1 − h∇f(Xk−1) + 2hξk
ξk ∼ +(0,Id)

’81 Parisi ’94 Grenander-Miller, ’96 Roberts-Tweedie



Langevin algorithms: Origin

• Langevin diffusion 
           
                       

• Under mild assumptions, diffusion converges to desired distribution 
    
                     

• Unadjusted Langevin algorithm: Euler discretization of Langevin diffusion 
 
                       

dXt = − ∇f(Xt)dt + 2dBt

∥P(Xt) − P⋆∥tv → 0 as t → ∞ (p⋆ ∝ e−f)

Xk = Xk−1 − h∇f(Xk−1) + 2hξk

  i.i.d. standard normalξk



Langevin algorithms: Origin

• Langevin diffusion 
           
                       

• Under mild assumptions, diffusion converges to desired distribution 
    
                     

• Unadjusted Langevin algorithm: Euler discretization of Langevin diffusion 
 
                       

dXt = − ∇f(Xt)dt + 2dBt

∥P(Xt) − P⋆∥tv → 0 as t → ∞ (p⋆ ∝ e−f)

Xk = Xk−1 − h∇f(Xk−1) + 2hξk
How to choose ? 
How many steps to take?

h

  i.i.d. standard normalξk



Langevin simulation: Trade-offs on convergence

Target density

x-value
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h
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accept-reject
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h

Metropolis-adjusted Langevin algorithm 
(MALA) 

1. Proposal step:   
2. Accept-reject step: Accept  with 

probability 

z = x − h∇f(x) + 2hξ
z

min {1, e−f(z) ⋅ Ph(z → x)
e−f(x) ⋅ Ph(x → z) }

Histogram of iterates upon convergence

Langevin simulation: Trade-offs on convergence



Langevin simulation: Trade-offs for mixing
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Several asymptotic and non-explicit guarantees

• Existence, Harris recurrence  
[’95 Meyn-Tweedie, ’96 Roberts-Rosenthal, ’00 Diaconis-Holmes-Neal,…] 

• Weak convergence and diffusion limits as   
[’98 Roberts-Rosenthal, ’12 Pillai et al., ’10 Beskos et al.,…] 

• Geometric and uniform ergodicity, Lyapunov coupling 
[’96 Roberts-Tweedie, ’04 Roberts-Rosenthal,  ’09 Bou-Rabee-Hairer, ’16 Livingstone et al.,…]

d → ∞



Several asymptotic and non-explicit guarantees

• Existence, Harris recurrence  
[’95 Meyn-Tweedie, ’96 Roberts-Rosenthal, ’00 Diaconis-Holmes-Neal,…] 

• Weak convergence and diffusion limits as   
[’98 Roberts-Rosenthal, ’12 Pillai et al., ’10 Beskos et al.,…] 

• Geometric and uniform ergodicity, Lyapunov coupling 
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d → ∞

Asymptotic convergence and geometric ergodicity do not immediately reveal 
user-friendly mixing time bounds in high-dimensions.  

 
Can we characterize dominance of MALA over ULA in a non-asymptotic sense?



• Assumption: Log-concave target density  
in  with  strongly convex and smooth 
                

• Mixing-time guarantee: Bound on iterations  
with dimension , conditioning , error  such that 
 
                  

p⋆ ∝ e−f

ℝd f
m0d ⪯ ∇2f ⪯ L0d; κ = L/m

T
d κ δ

∥P⋆ − P(XT)∥tv ≤ δ

κ = 1

κ = 7

Sampling analog of convex optimization

Contour of target 
distribution



Non-asymptotic mixing time for Langevin algorithms

ULA 
[’15 Dalalyan]

Mixing time dκ2 log(1/δ)
δ2

p⋆ ∝ e−f with f : ℝd → ℝ convex 

m0d ⪯ ∇2f ⪯ L0d; κ = L/m
∥P⋆ − P(XT)∥tv ≤ δ



Non-asymptotic mixing time for Langevin algorithms

ULA 
[’15 Dalalyan]

MALA 
[Our work]

Mixing time dκ log(1/δ)dκ2 log(1/δ)
δ2

p⋆ ∝ e−f with f : ℝd → ℝ convex 

m0d ⪯ ∇2f ⪯ L0d; κ = L/m
∥P⋆ − P(XT)∥tv ≤ δ

Accept-reject helps 
- Exponentially better 

dependence on  

- Better dependence on 
δ

κ



ULA 
[’15 Dalalyan]

MALA 
[Our work]

Mixing time

Step size

dκ log(1/δ)dκ2 log(1/δ)
δ2

p⋆ ∝ e−f with f : ℝd → ℝ convex 

m0d ⪯ ∇2f ⪯ L0d; κ = L/m
∥P⋆ − P(XT)∥tv ≤ δ

δ2

dκL
1

dL

Non-asymptotic mixing time for Langevin algorithms

Accept-reject helps 
- Exponentially better 

dependence on  

- Better dependence on 
δ

κ

step size limited by bias in 
ULA, and by accept-reject 

step in MALA



Next: How does gradient information help?

Metropolis-adjusted Langevin 
algorithm (MALA)

Proposal step
one gradient step

Mixing time

Step size

z = x − h∇f(x) + 2hξ

p⋆ ∝ e−f with f : ℝd → ℝ convex 

m0d ⪯ ∇2f ⪯ L0d; κ = L/m
∥P⋆ − P(XT)∥tv ≤ δ

1
dL

dκ log(1/δ)



MRW: No gradient leads to slower mixing

Metropolis 
random walk (MRW)

Metropolis-adjusted Langevin 
algorithm (MALA)

Proposal step
 
 

no gradient one gradient step

Mixing time

Step size

z = x − h∇f(x) + 2hξz = x + 2hξ

1
dL

1
dκL

dκ log(1/δ)dκ2 log(1/δ)

p⋆ ∝ e−f with f : ℝd → ℝ convex 

m0d ⪯ ∇2f ⪯ L0d; κ = L/m
∥P⋆ − P(XT)∥tv ≤ δ



HMC: Multiple gradient steps help mix faster

Metropolis 
random walk (MRW)

Metropolis-adjusted Langevin 
algorithm (MALA)

Metropolis-adjusted 
Hamiltonian Monte Carlo 

(HMC)

Proposal step
 
 

no gradient one gradient step

Hamiltonian dynamics with 
gradients per step 

(non-Gaussian proposal)

Mixing time

Step size

z = x − h∇f(x) + 2hξz = x + 2hξ K

1
dL

1
dκL

1
d 7

12 L 1
2

(K = d 1
4)

dκ log(1/δ)dκ2 log(1/δ) d 2
3κ log(1/δ)

Total #gradients = d 11
12κ log(1/δ)

p⋆ ∝ e−f with f : ℝd → ℝ convex 

m0d ⪯ ∇2f ⪯ L0d; κ = L/m
∥P⋆ − P(XT)∥tv ≤ δ
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4)
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Total #gradients = d 11
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Previous HMC bounds either worse than MALA or had 
 dependence due to no accept-reject step1/δ2

p⋆ ∝ e−f with f : ℝd → ℝ convex 

m0d ⪯ ∇2f ⪯ L0d; κ = L/m
∥P⋆ − P(XT)∥tv ≤ δ



• Distance of initial distribution:  

• Previous mixing bounds scale  
 
       quite common  Extra  factor in mixing time bounds

M = sup
x

p0(x)
p⋆(x)

3(log M)

M = 3(ed) ⇒ d

How do the guarantees depend on where you start?



• Distance of initial distribution:  

• Previous mixing bounds scale  
 
       quite common  Extra  factor in mixing time bounds 

• We provide an exponential improvement  
 

 scaling  Starting point doesn’t affect much

M = sup
x

p0(x)
p⋆(x)

3(log M)

M = 3(ed) ⇒ d

3 (log log M) ⇒

How do the guarantees depend on where you start?



MALA

MRW

HMC
Better use of 

gradients leads to 
faster mixing

- gradient info

+ multiple  
gradients

Refs: 1. Log-concave sampling: Metropolis-Hastings algorithms are fast 
         [Dwivedi*-Chen*-Wainwright-Yu, ’19 JMLR] 
         2. Fast mixing of Metropolized Hamiltonian Monte Carlo: Benefits of multi-step gradients 
         [Chen-Dwivedi-Wainwright-Yu, ’20 JMLR]

Overview of MCMC guarantees

ULA
+ accept reject

exponentially 
better mixing 

time



Thinning without losing

1. How to thin without losing information?  

2. How to ensure validity for rich enough function class?



Recall: Motivation

• Long runs of MCMC often simulated to ensure convergence and mixing 
 

    for ’s from Markov Chain 

• When evaluating  expensive, samples often compressed/thinned to 
save computation

ℙ⋆g := ∫ g(θ)p⋆(θ)dθ ≈ 1
n

n

∑
i=1

g(θi) =: ℙng xi

g



 x1, x2, …, xn ∈ ℝd

ℙin := 1
n

n

∑
i=1

δxi

Standard-
Thinning

m
Uniform subsample  

of size  

  
n/m

y1, …, yn/m

ℙout := 1
n/m

n/m

∑
i=1

δyi

Standard Thinning: Can not compress too much
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Standard Thinning: Can not compress too much

 x1, x2, …, xn ∈ ℝd

ℙin := 1
n

n

∑
i=1

δxi

Standard-
Thinning

m

Standard thinning guarantee

Monte Carlo guarantee: 
(Input =  iid or fast mixing  

MCMC points)
n

 has to be a constant to have  accuracy after thinningm n−1/2

Uniform subsample  
of size  

  
n/m

y1, …, yn/m

ℙout := 1
n/m

n/m

∑
i=1

δyi

 sup
∥g∥≤1

|ℙing − ℙoutg | ≾ m
n

    sup
∥g∥≤1

|ℙing − ℙ⋆g | ≾ 1
n



How can we provably and practically compress 
much more while keeping  accuracy?n−1/2

Via Kernel Thinning!

Joint work 
with

Lester Mackey



Kernel 
Thinning 

(KT)

 
suitable kernels 

x1, x2, …, xn ∈ ℝd

ℙin := 1
n

n

∑
i=1

δxi

Non-uniform sample of size   
 

n
y1, …, y n

ℙKT := 1
n

n

∑
i=1

δyi

Kernel Thinning: Compress to  points with  errorn n−1/2



Kernel 
Thinning 

(KT)

 sup
∥g∥k≤1

|ℙing − ℙKTg | ≾d

n−1/2 log n

n−1/2 logd+1 n log log n

(Compactly supported)

(Sub-exponential tails)

 
suitable kernels 

x1, x2, …, xn ∈ ℝd

ℙin := 1
n

n

∑
i=1

δxi

Non-uniform sample of size   
 

n
y1, …, y n

ℙKT := 1
n

n

∑
i=1

δyi

Kernel Thinning: Compress to  points with  errorn n−1/2



Highlights of kernel thinning

• KT guarantees  error with  points, which 

• is significantly superior to  rates from Standard-  Thinning  

• applies to arbitrary functions in infinite-dimensional reproducing 
kernel Hilbert spaces (RKHS), and fairly generic input points (including 
MCMC points) 

• The algorithm requires only kernel evaluations for implementation

n−1/2 n

n−1/4 n



Effect of high dimensions on KT

IID input, Gaussian target distribution with Gaussian kernel

Error

Output size n Output size n Output size n Output size n



pip install kernelthinning

Standard-  
Thinning

n

Kernel  
Thinning

 pointsn  points  
with  error

n
n−1/4

 pointsn
 points  

with  error
n
n−1/2

Like Quasi Monte Carlo but 
applicable more widely

Nearly minimax integration 
error in many settings

Nearly optimal -errorL∞

Summary: Thinning a lot without losing!

Refs: Kernel Thinning [Dwivedi-Mackey, ’21 COLT]



Going back to the cardiac 
experiments



Estimate single-cell model parameters 

How to draw random samples from the 
posterior? 
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Metropolis 
random walk

Kernel  
Thinning

Output size n(*MCMC samples taken from Riabiz et al. 2020)

Error in 
Gaussian-RKHS

MCMC samples fed to 
thinning methods

Estimate single-cell model parameters 

How to draw random samples from the 
posterior? 

 
 (38-dimensional) 

(  = single cell parameters)
θ1, θ2, …, θn ∼ p⋆

θ



Summary: Generating and thinning MCMC samples

• Guarantees for MCMC sampling: 

• finite time benefits of accept-reject step, and gradients 

• Not covered: Sampling under constraints 

• New thinning methods that discard samples effectively: 

• without losing information for rich function classes 

• Not covered: Thin a little, and gain a lot Ref: The power of online thinning in 
reducing discrepancy  
[Dwivedi-Feldheim-Gurevich-Ramdas, 
’19 PTRF]

Ref: Fast MCMC sampling on polytopes  
[Chen*-Dwivedi*-Wainwright-Yu, ’18 JMLR]
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