
Principled Statistical Approaches For
Sampling and Inference in High Dimensions

Raaz Dwivedi
PhD Advisors: Martin Wainwright and Bin Yu

EECS Department

Dissertation Talk
August 11, 2021

Self-driving car Financial markets

Precision medicineJustice systems

Advances of machine learning

The explosion in data
abundance and the
compute power is
fueling the increase in
number of complex ML
models and algorithms
and the advent of ML in
high-stakes domains

Which model/algorithm to prefer?
Judgment calls become critical and we need principled approaches to gather
empirical and theoretical evidence to inform decision making

Supervised
learning

Sampling methods

Unsupervised
learning

Causal inference

Blessed with hold-out accuracy

This dissertation provides
principled approaches

for choice making where hold-out
accuracy is not readily available

Which model/algorithm to prefer?
Judgment calls become critical and we need principled approaches to gather
empirical and theoretical evidence to inform decision making

Supervised
learning

Sampling methods

Unsupervised
learning

Causal inference

Blessed with hold-out accuracy

This dissertation provides
principled approaches

for choice making where hold-out
accuracy is not readily available

This talk

Drawing samples from probability distributions: A fundamental task!

Monte Carlo simulation
(Digital Heart Experiments)

Generative modeling
(generating natural scenarios)

Bayesian inference
(Uncertainty quantification)

Numerical integration
(solving complex PDEs)

Digital heart experiments in computational cardiology

• Digital twin heart experiments try to simulate patient’s response to various
therapies in a non-invasive way

• Single-cell calcium signaling model a building block for the tissue- and
heart-level models

*Picture credits: Google

Single-cell model

• Single-cell calcium signaling modeled via ODEs, and unknown parameters
inferred from observed data using a Bayesian set-up

*Picture credits: Google, Hinch et al. 2004

Organ-level modeling

• Single-cell model then passed to various tissue and organ-level simulators
that take 1000s of CPU hours for single computation

*Picture credits: Google, Hinch et al. 2004

Estimate single-cell model parameters

How to draw random samples from the
posterior?

(= single cell parameters)
θ1, θ2, …, θn ∼ p⋆

θ

Sampling
methods

Estimate single-cell model parameters

How to draw random samples from the
posterior?

(= single cell parameters)
θ1, θ2, …, θn ∼ p⋆

θ

Estimate effect of therapy at organ-level

#[g(θ)] = ∫ g(θ)p⋆(θ)dθ ≈ 1
n

n

∑
i=1

g(θi)

Sampling
methods

Estimate single-cell model parameters

How to draw random samples from the
posterior?

(= single cell parameters)
θ1, θ2, …, θn ∼ p⋆

θ

Estimate effect of therapy at organ-level

 = Heart simulator takes 1000s of hours

#[g(θ)] = ∫ g(θ)p⋆(θ)dθ ≈ 1
n

n

∑
i=1

g(θi)

g

Sampling
methods

Estimate single-cell model parameters

How to draw random samples from the
posterior?

(= single cell parameters)
θ1, θ2, …, θn ∼ p⋆

θ

Estimate effect of therapy at organ-level

 = Heart simulator takes 1000s of hours

How to compress the points to size while

ensuring ?

#[g(θ)] = ∫ g(θ)p⋆(θ)dθ ≈ 1
n

n

∑
i=1

g(θi)

g

t ≪ n
1
n

n

∑
i=1

g(θi) ≈ 1
t

t

∑
j=1

g(θ̃j)

Sampling
methods

Thinning
methods

Random sampling

• Numerous sampling algorithms proposed, Markov chain Monte Carlo
(MCMC) being the most popular

• MCMC method = Set up a Markov chain that converges to the target
distribution as number of steps go to p⋆ ∞

θ1, θ2, …, θn ∼ p⋆

1. How many steps do we need to simulate the chain for?

2. How do we tune the Markov chain for fast convergence?

Thinning/compression

• Commonly used: Standard thinning—-choose points uniformly at
random, but approximation error gets worse quickly as reduces

• Other fancier methods: Do not apply to general enough function class

t
t

 for
1
n

n

∑
i=1

g(θi) ≈ 1
t

t

∑
j=1

g(θ̃j) t ≪ n

1. How to thin without losing information?

2. How to ensure validity for rich enough function class?

Explicit user-friendly guarantees
for MCMC methods

Yuansi Chen Martin Wainwright Bin Yu

Joint work with

• Find mode of the density (or MAP)

• Gradient descent

x⋆ ← arg max p⋆ = arg min f

xk = xk−1 − h∇f(xk−1)

Sampling versus optimization
• Draw samples from the density

• Unadjusted Langevin algorithm (ULA)

X ∼ p⋆ ∝ e−f

Xk = Xk−1 − h∇f(Xk−1) + 2hξk
ξk ∼ +(0,Id)

’81 Parisi ’94 Grenander-Miller, ’96 Roberts-Tweedie

Langevin algorithms: Origin

• Langevin diffusion

• Under mild assumptions, diffusion converges to desired distribution

• Unadjusted Langevin algorithm: Euler discretization of Langevin diffusion

dXt = − ∇f(Xt)dt + 2dBt

∥P(Xt) − P⋆∥tv → 0 as t → ∞ (p⋆ ∝ e−f)

Xk = Xk−1 − h∇f(Xk−1) + 2hξk

 i.i.d. standard normalξk

Langevin algorithms: Origin

• Langevin diffusion

• Under mild assumptions, diffusion converges to desired distribution

• Unadjusted Langevin algorithm: Euler discretization of Langevin diffusion

dXt = − ∇f(Xt)dt + 2dBt

∥P(Xt) − P⋆∥tv → 0 as t → ∞ (p⋆ ∝ e−f)

Xk = Xk−1 − h∇f(Xk−1) + 2hξk
How to choose ?
How many steps to take?

h

 i.i.d. standard normalξk

Langevin simulation: Trade-offs on convergence

Target density

x-value

density
value

Large
ULA

h

Histogram of iterates upon convergence

Langevin simulation: Trade-offs on convergence

Small
ULA

h
Target density

x-value

density
value

x-value

Large
ULA

h

Histogram of iterates upon convergence

Histogram of iterates upon convergence

Small
ULA

h
Target density

x-value

density
value

x-value x-value

Large ULA +
accept-reject

hLarge
ULA

h

Langevin simulation: Trade-offs on convergence

Small
ULA

h
Target density

x-value

density
value

x-value x-value

Large ULA +
accept-reject

hLarge
ULA

h

Metropolis-adjusted Langevin algorithm
(MALA)

1. Proposal step:
2. Accept-reject step: Accept with

probability

z = x − h∇f(x) + 2hξ
z

min {1, e−f(z) ⋅ Ph(z → x)
e−f(x) ⋅ Ph(x → z) }

Histogram of iterates upon convergence

Langevin simulation: Trade-offs on convergence

Langevin simulation: Trade-offs for mixing

0 100 200 300 400 500 600
Iteration

10°1

100

T
V
in

H
is
to
gr
am

ULA large

ULA opt

ULA small

MALA

Error Small step ULA

Large step MALA

Large step ULA

Several asymptotic and non-explicit guarantees

• Existence, Harris recurrence
[’95 Meyn-Tweedie, ’96 Roberts-Rosenthal, ’00 Diaconis-Holmes-Neal,…]

• Weak convergence and diffusion limits as
[’98 Roberts-Rosenthal, ’12 Pillai et al., ’10 Beskos et al.,…]

• Geometric and uniform ergodicity, Lyapunov coupling
[’96 Roberts-Tweedie, ’04 Roberts-Rosenthal, ’09 Bou-Rabee-Hairer, ’16 Livingstone et al.,…]

d → ∞

Several asymptotic and non-explicit guarantees

• Existence, Harris recurrence
[’95 Meyn-Tweedie, ’96 Roberts-Rosenthal, ’00 Diaconis-Holmes-Neal,…]

• Weak convergence and diffusion limits as
[’98 Roberts-Rosenthal, ’12 Pillai et al., ’10 Beskos et al.,…]

• Geometric and uniform ergodicity, Lyapunov coupling
[’96 Roberts-Tweedie, ’04 Roberts-Rosenthal, ’09 Bou-Rabee-Hairer, ’16 Livingstone et al.,…]

d → ∞

Asymptotic convergence and geometric ergodicity do not immediately reveal
user-friendly mixing time bounds in high-dimensions.

Can we characterize dominance of MALA over ULA in a non-asymptotic sense?

• Assumption: Log-concave target density
in with strongly convex and smooth

• Mixing-time guarantee: Bound on iterations
with dimension , conditioning , error such that

p⋆ ∝ e−f

ℝd f
m0d ⪯ ∇2f ⪯ L0d; κ = L/m

T
d κ δ

∥P⋆ − P(XT)∥tv ≤ δ

κ = 1

κ = 7

Sampling analog of convex optimization

Contour of target
distribution

Non-asymptotic mixing time for Langevin algorithms

ULA
[’15 Dalalyan]

Mixing time dκ2 log(1/δ)
δ2

p⋆ ∝ e−f with f : ℝd → ℝ convex

m0d ⪯ ∇2f ⪯ L0d; κ = L/m
∥P⋆ − P(XT)∥tv ≤ δ

Non-asymptotic mixing time for Langevin algorithms

ULA
[’15 Dalalyan]

MALA
[Our work]

Mixing time dκ log(1/δ)dκ2 log(1/δ)
δ2

p⋆ ∝ e−f with f : ℝd → ℝ convex

m0d ⪯ ∇2f ⪯ L0d; κ = L/m
∥P⋆ − P(XT)∥tv ≤ δ

Accept-reject helps
- Exponentially better

dependence on

- Better dependence on
δ

κ

ULA
[’15 Dalalyan]

MALA
[Our work]

Mixing time

Step size

dκ log(1/δ)dκ2 log(1/δ)
δ2

p⋆ ∝ e−f with f : ℝd → ℝ convex

m0d ⪯ ∇2f ⪯ L0d; κ = L/m
∥P⋆ − P(XT)∥tv ≤ δ

δ2

dκL
1

dL

Non-asymptotic mixing time for Langevin algorithms

Accept-reject helps
- Exponentially better

dependence on

- Better dependence on
δ

κ

step size limited by bias in
ULA, and by accept-reject

step in MALA

Next: How does gradient information help?

Metropolis-adjusted Langevin
algorithm (MALA)

Proposal step
one gradient step

Mixing time

Step size

z = x − h∇f(x) + 2hξ

p⋆ ∝ e−f with f : ℝd → ℝ convex

m0d ⪯ ∇2f ⪯ L0d; κ = L/m
∥P⋆ − P(XT)∥tv ≤ δ

1
dL

dκ log(1/δ)

MRW: No gradient leads to slower mixing

Metropolis
random walk (MRW)

Metropolis-adjusted Langevin
algorithm (MALA)

Proposal step

no gradient one gradient step

Mixing time

Step size

z = x − h∇f(x) + 2hξz = x + 2hξ

1
dL

1
dκL

dκ log(1/δ)dκ2 log(1/δ)

p⋆ ∝ e−f with f : ℝd → ℝ convex

m0d ⪯ ∇2f ⪯ L0d; κ = L/m
∥P⋆ − P(XT)∥tv ≤ δ

HMC: Multiple gradient steps help mix faster

Metropolis
random walk (MRW)

Metropolis-adjusted Langevin
algorithm (MALA)

Metropolis-adjusted
Hamiltonian Monte Carlo

(HMC)

Proposal step

no gradient one gradient step

Hamiltonian dynamics with
gradients per step

(non-Gaussian proposal)

Mixing time

Step size

z = x − h∇f(x) + 2hξz = x + 2hξ K

1
dL

1
dκL

1
d 7

12 L 1
2

(K = d 1
4)

dκ log(1/δ)dκ2 log(1/δ) d 2
3κ log(1/δ)

Total #gradients = d 11
12κ log(1/δ)

p⋆ ∝ e−f with f : ℝd → ℝ convex

m0d ⪯ ∇2f ⪯ L0d; κ = L/m
∥P⋆ − P(XT)∥tv ≤ δ

HMC: Multiple gradient steps help mix faster

Metropolis
random walk (MRW)

Metropolis-adjusted Langevin
algorithm (MALA)

Metropolis-adjusted
Hamiltonian Monte Carlo

(HMC)

Proposal step

no gradient one gradient step

Hamiltonian dynamics with
gradients per step

(non-Gaussian proposal)

Mixing time

Step size

z = x − h∇f(x) + 2hξz = x + 2hξ K

1
dL

1
dκL

1
d 7

12 L 1
2

(K = d 1
4)

dκ log(1/δ)dκ2 log(1/δ) d 2
3κ log(1/δ)

Total #gradients = d 11
12κ log(1/δ)

Previous HMC bounds either worse than MALA or had
 dependence due to no accept-reject step1/δ2

p⋆ ∝ e−f with f : ℝd → ℝ convex

m0d ⪯ ∇2f ⪯ L0d; κ = L/m
∥P⋆ − P(XT)∥tv ≤ δ

• Distance of initial distribution:

• Previous mixing bounds scale

 quite common Extra factor in mixing time bounds

M = sup
x

p0(x)
p⋆(x)

3(log M)

M = 3(ed) ⇒ d

How do the guarantees depend on where you start?

• Distance of initial distribution:

• Previous mixing bounds scale

 quite common Extra factor in mixing time bounds

• We provide an exponential improvement

 scaling Starting point doesn’t affect much

M = sup
x

p0(x)
p⋆(x)

3(log M)

M = 3(ed) ⇒ d

3 (log log M) ⇒

How do the guarantees depend on where you start?

MALA

MRW

HMC
Better use of

gradients leads to
faster mixing

- gradient info

+ multiple
gradients

Refs: 1. Log-concave sampling: Metropolis-Hastings algorithms are fast
 [Dwivedi*-Chen*-Wainwright-Yu, ’19 JMLR]
 2. Fast mixing of Metropolized Hamiltonian Monte Carlo: Benefits of multi-step gradients
 [Chen-Dwivedi-Wainwright-Yu, ’20 JMLR]

Overview of MCMC guarantees

ULA
+ accept reject

exponentially
better mixing

time

Thinning without losing

1. How to thin without losing information?

2. How to ensure validity for rich enough function class?

Recall: Motivation

• Long runs of MCMC often simulated to ensure convergence and mixing

 for ’s from Markov Chain

• When evaluating expensive, samples often compressed/thinned to
save computation

ℙ⋆g := ∫ g(θ)p⋆(θ)dθ ≈ 1
n

n

∑
i=1

g(θi) =: ℙng xi

g

 x1, x2, …, xn ∈ ℝd

ℙin := 1
n

n

∑
i=1

δxi

Standard-
Thinning

m
Uniform subsample

of size

n/m

y1, …, yn/m

ℙout := 1
n/m

n/m

∑
i=1

δyi

Standard Thinning: Can not compress too much

 x1, x2, …, xn ∈ ℝd

ℙin := 1
n

n

∑
i=1

δxi

Standard-
Thinning

m

 sup
∥g∥≤1

|ℙing − ℙoutg | ≾ m
n

Standard thinning guarantee

Standard Thinning: Can not compress too much
Uniform subsample

of size

n/m

y1, …, yn/m

ℙout := 1
n/m

n/m

∑
i=1

δyi

 x1, x2, …, xn ∈ ℝd

ℙin := 1
n

n

∑
i=1

δxi

Standard-
Thinning

m

Standard thinning guarantee

 sup
∥g∥≤1

|ℙing − ℙ⋆g | ≾ 1
n

Monte Carlo guarantee:
(Input = iid or fast mixing

MCMC points)
n

Standard Thinning: Can not compress too much
Uniform subsample

of size

n/m

y1, …, yn/m

ℙout := 1
n/m

n/m

∑
i=1

δyi

 sup
∥g∥≤1

|ℙing − ℙoutg | ≾ m
n

Standard Thinning: Can not compress too much

 x1, x2, …, xn ∈ ℝd

ℙin := 1
n

n

∑
i=1

δxi

Standard-
Thinning

m

Standard thinning guarantee

Monte Carlo guarantee:
(Input = iid or fast mixing

MCMC points)
n

 has to be a constant to have accuracy after thinningm n−1/2

Uniform subsample
of size

n/m

y1, …, yn/m

ℙout := 1
n/m

n/m

∑
i=1

δyi

 sup
∥g∥≤1

|ℙing − ℙoutg | ≾ m
n

 sup
∥g∥≤1

|ℙing − ℙ⋆g | ≾ 1
n

How can we provably and practically compress
much more while keeping accuracy?n−1/2

Via Kernel Thinning!

Joint work
with

Lester Mackey

Kernel
Thinning

(KT)

suitable kernels

x1, x2, …, xn ∈ ℝd

ℙin := 1
n

n

∑
i=1

δxi

Non-uniform sample of size

n
y1, …, y n

ℙKT := 1
n

n

∑
i=1

δyi

Kernel Thinning: Compress to points with errorn n−1/2

Kernel
Thinning

(KT)

 sup
∥g∥k≤1

|ℙing − ℙKTg | ≾d

n−1/2 log n

n−1/2 logd+1 n log log n

(Compactly supported)

(Sub-exponential tails)

suitable kernels

x1, x2, …, xn ∈ ℝd

ℙin := 1
n

n

∑
i=1

δxi

Non-uniform sample of size

n
y1, …, y n

ℙKT := 1
n

n

∑
i=1

δyi

Kernel Thinning: Compress to points with errorn n−1/2

Highlights of kernel thinning

• KT guarantees error with points, which

• is significantly superior to rates from Standard- Thinning

• applies to arbitrary functions in infinite-dimensional reproducing
kernel Hilbert spaces (RKHS), and fairly generic input points (including
MCMC points)

• The algorithm requires only kernel evaluations for implementation

n−1/2 n

n−1/4 n

Effect of high dimensions on KT

IID input, Gaussian target distribution with Gaussian kernel

Error

Output size n Output size n Output size n Output size n

pip install kernelthinning

Standard-
Thinning

n

Kernel
Thinning

 pointsn points
with error

n
n−1/4

 pointsn
 points

with error
n
n−1/2

Like Quasi Monte Carlo but
applicable more widely

Nearly minimax integration
error in many settings

Nearly optimal -errorL∞

Summary: Thinning a lot without losing!

Refs: Kernel Thinning [Dwivedi-Mackey, ’21 COLT]

Going back to the cardiac
experiments

Estimate single-cell model parameters

How to draw random samples from the
posterior?

 (38-dimensional)

(= single cell parameters)
θ1, θ2, …, θn ∼ p⋆

θ

Estimate effect of therapy at organ-level

 = Heart simulator takes 1000s of hours

How to compress the points to size while

ensuring ?

#[g(θ)] = ∫ g(θ)p⋆(θ)dθ ≈ 1
n

n

∑
i=1

g(θi)

g

t ≪ n
1
n

n

∑
i=1

g(θi) ≈ 1
t

t

∑
j=1

g(θ̃j)

Estimate single-cell model parameters

How to draw random samples from the
posterior?

 (38-dimensional)

(= single cell parameters)
θ1, θ2, …, θn ∼ p⋆

θ

Estimate effect of therapy at organ-level

 = Heart simulator takes 1000s of hours

How to compress the points to size while

ensuring ?

#[g(θ)] = ∫ g(θ)p⋆(θ)dθ ≈ 1
n

n

∑
i=1

g(θi)

g

t ≪ n
1
n

n

∑
i=1

g(θi) ≈ 1
t

t

∑
j=1

g(θ̃j)

Metropolis
random walk

Kernel
Thinning

Metropolis
random walk

Kernel
Thinning

Output size n(*MCMC samples taken from Riabiz et al. 2020)

Error in
Gaussian-RKHS

MCMC samples fed to
thinning methods

Estimate single-cell model parameters

How to draw random samples from the
posterior?

 (38-dimensional)

(= single cell parameters)
θ1, θ2, …, θn ∼ p⋆

θ

Summary: Generating and thinning MCMC samples

• Guarantees for MCMC sampling:

• finite time benefits of accept-reject step, and gradients

• Not covered: Sampling under constraints

• New thinning methods that discard samples effectively:

• without losing information for rich function classes

• Not covered: Thin a little, and gain a lot Ref: The power of online thinning in
reducing discrepancy
[Dwivedi-Feldheim-Gurevich-Ramdas,
’19 PTRF]

Ref: Fast MCMC sampling on polytopes
[Chen*-Dwivedi*-Wainwright-Yu, ’18 JMLR]

Which model/algorithm to prefer?
Judgment calls become critical and we need principled approaches to gather
empirical and theoretical evidence to inform decision making

Supervised
learning

Sampling methods

Unsupervised
learning

Causal inference

Blessed with hold-out accuracy

This dissertation provides
principled approaches

for choice making where hold-out
accuracy is not readily available

This talk

Acknowledgments

