Removing sampling bias in networked

stochastic approximation

Vivek Borkar*
IIT Bombay

July 2014

Joint work with Raaz Dwivedi

Supported by DST



NETWORKED STOCHASTIC APPROXIMATION

e Directed or undirected graph G = (V, &)

e N (i) CV is the set of neighbors of ¢ € V

e cach node 1 = a computing element that performs the
following iteration:
zi(n+1) = z;(n) +an)[ > &j(n){hij(z(n), Y (n))
JEN (i)
+M;(n + 1)})].



‘Usual conditions’: For n > 0 and

Fn = o(xz(m), M(m),Y(’rYL),fij(m),m <n,i,j€V),

e {Y(n)}is a process taking values in a finite state space

S and satisfying:
P(Y(n+1) = j|Fn) = pyn)UlY(n)), 5 €5, n>0,

for a parametrized family of transition probabilities
{pz(:|])},z € R% on S such that the corresponding
stochastic matrix P, is irreducible and Lipschitz in x

(the Markov noise),



e {M(n)} is a square-integrable sequence adapted to
{Fn} satisfying for n > 0O,

E[M(n+1)|Fs] = 0, E[||M(n+1)|?|F] < K(Q1+]z(n)|?),

for some K > 0 (the Martingale noise),
e a(n) > 0 satisfy ©,a(n) = oo, Spa(n)? < oo
e hii(-,-) : RYx S+ R Lipschitz in the first argument,

e {{;j(n)} independent {0, 1}-valued random variables,
¢&;(n) =1 <= i polls j € N'(i) at time n.



Notation:

e T, .= the unique invariant distribution under P;

Assume ‘stability’: sup,, ||z(n)|| < co w.p.1.

Compare with the classical ‘Robbins-Monro’ scheme

z(n+1) = z(n) + a(n)[h(z(n)) + M(n + 1)].



Tracks w.p.1 the asymptotic behavior of the o.d.e.

#(t) = h(z(t)).

Our scheme tracks w.p.1 the asymptotic behavior of the
o.d.e.

wi(t) = > Nj(Dhi(x(t)), 1 <i<d,
JEN(4)
where \;;(t) ~ the ‘instantaneous relative frequencies’
with which 7 polls j.

This can have different and possibly undesired
asymptotic behavior.



MODIFICATION.:
Define v(i,j,n) ;= 2} _g&ij(m), n >0 (‘local clocks’).

Assume that:

1. There exists 6 > 0 such that Va,

iminf 2™

> § a.s. (1)
ntoo n

(i.e., all components are updated ‘comparably often’).



2. {a(n)} satisfy, for A(n) :=X" _qa(m),c € (0,1),

sup ) vy e, (2)
n a(n)
A
(ynd) miee 1 Lniformly in y € (.11, (3)
A(n)
These are satisfied, e.g., by a(n) = %, nlog(ln)—|-1 etc., but
not by, e.g., .
n3

(a(n) | ‘fast enough’ = A(n) 1 sufficiently slowly).



Replace our iteration by by

riin+1) = z;(n)+[ > a(v(i,j,n))&(n){h;j(z(n),Y(n))
FJEN (4)
+M;(n + 1)}].

If stable, then it tracks w.p.1 the asymptotic behavior of

the o.d.e.

H(8) = h(a(),

e, X\;(t) = % Vi,7 € N(i),t > 0. where d as before is

the dimension of x(t), equivalently, the number of nodes.



—= the asymptotic behavior of this o.d.e. is the same as
that of z(¢t) = h(x(t))

(The two are time-scaled versions of each other — set

T = %)

—= |dentical trajectories, only the speed with which they

are traversed is affected.

Communication delays can also be handled.



A Reputation System (Truong et al)

e Experts {1,---,d} with ratings (‘reputation’)
pit>0,1<i<d,

e equal initial reputation: p} = 3 Vi,

o :z;% c [0, 1] : expert i's predictions of i.i.d. observations

y; € {0, 1},



e y; . weighted prediction given by

ZiEEt p%m%

Yt =
ZiEEt p%

,

o [, := the set of experts active at time ¢,

e p! according to

Piy1 = pitifi€ By, y=1,
g
1 — )

= p—— ificE, y=
— Ut



Assumption: The distribution of I{i € E:},t > 0O, is

stationary and symmetric in 2

— p! T 1 w.p.1l for the best expert if unique, other-

wise the scheme oscillates between best experts.

‘Assumption’ above necessitated by the sampling bias:
algorithm favors experts who opine more often.



Alternative scheme:

piy1 = TP+ a(w(i,t))I{i € Etjwj

— > a(v(G, t)I{j € Eyplu])]),
J

where,

o wl = yw] + (1 —a})(1 —y),

e v(j,t) =Xt _oI{j € Em},



e [(-) is the projection onto the d-dimensional probabil-
ity simplex S,

® yt E [07 1]1

e F; to be i.i.d. (can be relaxed), but not necessarily

symmetric.

Let z; := E[w!],1 <i < d, and without loss of generality,
let z1 > 25,5 7 1 (i.e., expert 1 is the best expert).

tT

Theorem p! = 1 w.p.1.



Remarks:

e Analysis based on the limiting o.d.e., which is a simple

instance of the ‘replicator dynamics’.

e Use constant stepsize for tracking slowly varying

environment.

e Objective ‘ordinal’ == ‘convergence’ fast.

e Applications to networked control?77?



Numerical experiments

e \We present numerical results for two different cases

for the reputation system.

e \We label the iterations by index n > 0 and thus n

plays the role of t.

e For a given i, we generate I(i € E,) in ani.i.d. fashion

for different =.



e For projection I, in simulations we use a slight mod-

ification followed by normalization

First calculate, p,(n+ 1) = max(e, Y), Vi,
: 1
And then normalize, p;(n +1) = pin + 1) . (4)
>ipj(n+1)

where Y denotes the argument of ' in RHS of alter-
native scheme with n replacing ¢t and ¢ = 107 ° is a
small number to prevent the algorithm from acciden-
tally getting stuck at a lower dimensional face of the

probability simplex (Note that these are invariant sets

for the iteration).



e For clarity we depict the variation of p, against iter-
ations for only three experts with largest z; values.
Using the convention that an expert ¢ is better than
expert j if z; > z;, we call these three experts as ‘Best
3 Experts’. If required, we refer to the unique best
expert as expert ¢*. We also define v; .= E(I(i € Ey))

(note the close relation to v(i,t)).

e The convergence rate of p;«(n) to 1 depends upon
values of z;+ and v;« relative to other z;'s and y;'s

resp. and can be boosted by changing the step size

schedule from a(n) = % to a(n where [X]

)= ]
In/K|+1



denotes greatest integer not greater than x and K is

a suitably chosen large integer.

e We use the modified step schedule with K = 100 for
both cases. This schedule continues to satisfy condi-
tions given in modification, but has a slower decrease,
leading to faster convergence at the expense of some-
what higher fluctuations. (This is a standard trade-off

in stochastic approximation.)

e \We provide two figures for each case, one of them
depicting transience (and fluctutations because of the



modification for faster convergence) and other show-

ing the (steady state) convergence result.



Case 1

For a reputation system with 20 experts, we generate
x;(n)'s and y(n) as independent random variables uni-
formly distributed in [0, 1] with randomly pre-assigned
means. Transience plot shows that p;«(n) is far from 1
because * has not opined sufficient number of times to
be identified as the best expert. While steady state plot
shows that finally the iterates converge to Dirac measure
1, with value 1 for the expert with highest z;, though v;«

IS ‘approximately half’ of the second best expert.



Transient Behavior of Best 3 Experts’ Reputation
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Steady State Behavior of Best 3 Experts’ Reputation
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Case 2

We simulate a reputation system with 10 experts. Here,
we directly generate w;'s. The z; values are pre-assigned
deterministically with one best expert ¢* such that z;x =
2z;, Vi F ",

However, the best expert is ‘10 times less likely’ to opine
than any other expert. That is, v = {514, Vi 7 i*. We

assign such ratios to demonstrate that the algorithm is



in fact successful in removing the sampling bias. Tran-
sience plot shows that initially there are great fluctuations
but eventually p;«(n) does converge to 1 as evident from

Steady State Plot.

As compared to the previous case, the number of iter-
ations for convergence are much larger because of the

‘very rare’ opining by the ‘best expert’ .



Transient Behavior of Best 3 Experts’ Reputation
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Steady State Behavior of Best 3 Experts’ Reputation
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