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NETWORKED STOCHASTIC APPROXIMATION

• Directed or undirected graph G = (V, E)

• N (i) ⊂ V is the set of neighbors of i ∈ V

• each node i ≈ a computing element that performs the

following iteration:

xi(n+ 1) = xi(n) + a(n)[
∑

j∈N (i)
ξij(n){hij(x(n), Y (n))

+Mi(n+ 1)})].



‘Usual conditions’: For n ≥ 0 and

Fn := σ(x(m),M(m), Y (m), ξij(m),m ≤ n, i, j ∈ V),

• {Y (n)} is a process taking values in a finite state space

S and satisfying:

P (Y (n+ 1) = j|Fn) = px(n)(j|Y (n)), j ∈ S, n ≥ 0,

for a parametrized family of transition probabilities

{px(·|·)}, x ∈ Rd, on S such that the corresponding

stochastic matrix Px is irreducible and Lipschitz in x

(the Markov noise),



• {M(n)} is a square-integrable sequence adapted to

{Fn} satisfying for n ≥ 0,

E[M(n+1)|Fn] = 0, E[‖M(n+1)‖2|Fn] ≤ K(1+‖x(n)‖2),

for some K > 0 (the Martingale noise),

• a(n) > 0 satisfy
∑
n a(n) =∞, ∑

n a(n)2 <∞

• hij(·, ·) : Rd × S 7→ R Lipschitz in the first argument,

• {ξij(n)} independent {0,1}-valued random variables,

ξij(n) = 1⇐⇒ i polls j ∈ N (i) at time n.



Notation:

• πx := the unique invariant distribution under Px

• ĥij(x) :=
∑
k πx(k)hij(x, k).

Assume ‘stability’: supn ‖x(n)‖ <∞ w.p.1.

Compare with the classical ‘Robbins-Monro’ scheme

x(n+ 1) = x(n) + a(n)[h(x(n)) +M(n+ 1)].



Tracks w.p.1 the asymptotic behavior of the o.d.e.

ẋ(t) = h(x(t)).

Our scheme tracks w.p.1 the asymptotic behavior of the

o.d.e.

ẋi(t) =
∑

j∈N (i)
λij(t)ĥij(x(t)), 1 ≤ i ≤ d,

where λij(t) ≈ the ‘instantaneous relative frequencies’

with which i polls j.

This can have different and possibly undesired

asymptotic behavior.



MODIFICATION:

Define ν(i, j, n) :=
∑n
m=0 ξij(m), n ≥ 0 (‘local clocks’).

Assume that:

1. There exists δ > 0 such that ∀i,

lim inf
n↑∞

ν(i, j, n)

n
≥ δ a.s. (1)

(i.e., all components are updated ‘comparably often’).



2. {a(n)} satisfy, for A(n) :=
∑n
m=0 a(m), c ∈ (0,1),

sup
n

a(bync)
a(n)

< ∞ ∀ y ∈ (0,1), (2)

A(bync)
A(n)

n↑∞→ 1 uniformly in y ∈ (c,1]. (3)

These are satisfied, e.g., by a(n) = 1
n,

1
n log(n)+1 etc., but

not by, e.g., 1

n
2
3
.

(a(n) ↓ ‘fast enough’ =⇒ A(n) ↑ sufficiently slowly).



Replace our iteration by by

xi(n+ 1) = xi(n) + [
∑

j∈N (i)
a(ν(i, j, n))ξij(n){hij(x(n), Y (n))

+Mi(n+ 1)}].

If stable, then it tracks w.p.1 the asymptotic behavior of

the o.d.e.

ẋ(t) =
1

d
h(x(t)),

i.e., λij(t) ≡ 1
d ∀ i, j ∈ N (i), t > 0. where d as before is

the dimension of x(t), equivalently, the number of nodes.



=⇒ the asymptotic behavior of this o.d.e. is the same as

that of ẋ(t) = h(x(t))

(The two are time-scaled versions of each other – set

τ := t
d.)

=⇒ identical trajectories, only the speed with which they

are traversed is affected.

Communication delays can also be handled.



A Reputation System (Truong et al)

• Experts {1, · · · , d} with ratings (‘reputation’)

pit, t ≥ 0,1 ≤ i ≤ d,

• equal initial reputation: pi0 = 1
d ∀i,

• xit ∈ [0,1] : expert i’s predictions of i.i.d. observations

yt ∈ {0,1},



• ŷt : weighted prediction given by

ŷt :=
∑
i∈Et p

i
tx
i
t∑

i∈Et p
i
t
,

• Et := the set of experts active at time t,

• pit according to

pit+1 = pit
xit
ŷt

if i ∈ Et, yt = 1,

= pit
1− xit
1− ŷt

if i ∈ Et, yt = 0,

= pit if i /∈ Et.



Assumption: The distribution of I{i ∈ Et}, t ≥ 0, is

stationary and symmetric in i

=⇒ pit
t↑∞→ 1 w.p.1 for the best expert if unique, other-

wise the scheme oscillates between best experts.

‘Assumption’ above necessitated by the sampling bias:
algorithm favors experts who opine more often.



Alternative scheme:

pit+1 = Γ(pit[1 + a(ν(i, t))I{i ∈ Et}wit
−

∑
j
a(ν(j, t))I{j ∈ Et}pjtw

j
t)]),

where,

• wjt := ytx
j
t + (1− xjt)(1− yt),

• ν(j, t) :=
∑t
m=0 I{j ∈ Em},



• Γ(·) is the projection onto the d-dimensional probabil-

ity simplex S,

• yt ∈ [0,1],

• Et to be i.i.d. (can be relaxed), but not necessarily

symmetric.

Let zi := E[wit],1 ≤ i ≤ d, and without loss of generality,

let z1 > zj, j 6= 1 (i.e., expert 1 is the best expert).

Theorem p1
t
t↑∞→ 1 w.p.1.



Remarks:

• Analysis based on the limiting o.d.e., which is a simple

instance of the ‘replicator dynamics’.

• Use constant stepsize for tracking slowly varying

environment.

• objective ‘ordinal’ =⇒ ‘convergence’ fast.

• Applications to networked control???



Numerical experiments

• We present numerical results for two different cases

for the reputation system.

• We label the iterations by index n ≥ 0 and thus n

plays the role of t.

• For a given i, we generate I(i ∈ En) in an i.i.d. fashion

for different i.



• For projection Γ, in simulations we use a slight mod-

ification followed by normalization

First calculate, pi(n+ 1) = max(ε, Y ), ∀i,

And then normalize, pi(n+ 1) =
pi(n+ 1)∑
j pj(n+ 1)

, (4)

where Y denotes the argument of Γ in RHS of alter-

native scheme with n replacing t and ε = 10−6 is a

small number to prevent the algorithm from acciden-

tally getting stuck at a lower dimensional face of the

probability simplex (Note that these are invariant sets

for the iteration).



• For clarity we depict the variation of pi against iter-

ations for only three experts with largest zi values.

Using the convention that an expert i is better than

expert j if zi > zj, we call these three experts as ‘Best

3 Experts’. If required, we refer to the unique best

expert as expert i∗. We also define νi := E(I(i ∈ En))

(note the close relation to ν(i, t)).

• The convergence rate of pi∗(n) to 1 depends upon

values of zi∗ and νi∗ relative to other zi’s and νi’s

resp. and can be boosted by changing the step size

schedule from a(n) = 1
n to a(n) = 1

[n/K]+1 where [x]



denotes greatest integer not greater than x and K is

a suitably chosen large integer.

• We use the modified step schedule with K = 100 for

both cases. This schedule continues to satisfy condi-

tions given in modification, but has a slower decrease,

leading to faster convergence at the expense of some-

what higher fluctuations. (This is a standard trade-off

in stochastic approximation.)

• We provide two figures for each case, one of them

depicting transience (and fluctutations because of the



modification for faster convergence) and other show-

ing the (steady state) convergence result.



Case 1

For a reputation system with 20 experts, we generate

xi(n)’s and y(n) as independent random variables uni-

formly distributed in [0,1] with randomly pre-assigned

means. Transience plot shows that pi∗(n) is far from 1

because i∗ has not opined sufficient number of times to

be identified as the best expert. While steady state plot

shows that finally the iterates converge to Dirac measure

1, with value 1 for the expert with highest zi, though νi∗

is ‘approximately half’ of the second best expert.



Transient Behavior of Best 3 Experts’ Reputation





Steady State Behavior of Best 3 Experts’ Reputation





Case 2

We simulate a reputation system with 10 experts. Here,

we directly generate wi’s. The zi values are pre-assigned

deterministically with one best expert i∗ such that zi∗ =

2zi, ∀i 6= i∗.

However, the best expert is ‘10 times less likely’ to opine

than any other expert. That is, νi∗ = 1
10νi, ∀i 6= i∗. We

assign such ratios to demonstrate that the algorithm is



in fact successful in removing the sampling bias. Tran-

sience plot shows that initially there are great fluctuations

but eventually pi∗(n) does converge to 1 as evident from

Steady State Plot.

As compared to the previous case, the number of iter-

ations for convergence are much larger because of the

‘very rare’ opining by the ‘best expert’ .



Transient Behavior of Best 3 Experts’ Reputation





Steady State Behavior of Best 3 Experts’ Reputation




