Theoretical Guarantees for Markov Chain Monte Carlo (MCMC) Algorithms

Raaz Dwivedi
Advised by Prof Martin Wainwright and Prof Bin Yu
Department of EECS

Random Sampling

- We consider the problem of drawing random samples from a given density (known up-to proportionality)

$$
X_{1}, X_{2}, \ldots, X_{m} \sim \pi
$$

Sampling: A fundamental task

Monte Carlo Approximations

Rare event simulations

Bayesian inference

Zeroth order optimization

Escaping saddle points

Simulated annealing

Starting point: The reverse direction! From optimization to sampling

Optimization

Sampling

- Find the global minimum (or a stationary point)

$$
\min _{x \in \mathbb{R}^{d}} f(x)
$$

- Gradient descent:

$$
x_{k+1}=x_{k}-h \nabla f\left(x_{k}\right)
$$

- Stochastic Gradient Algorithm:

$$
X_{k+1}=X_{k}-h \nabla f\left(X_{k}\right)+h \xi_{k+1}
$$

- Sampling: draw samples from the density

$$
\pi(x) \propto e^{-f(x)}
$$

- Unadjusted Langevin algorithm (ULA):

$$
X_{k+1}=X_{k}-h \nabla f\left(X_{k}\right)+\sqrt{2 h} \xi_{k+1}
$$

$$
\xi \stackrel{i . i . d .}{\sim} \mathcal{N}\left(0, I_{d \times d}\right)
$$

[Parisi 1981, Grenander \& Miller 1994, Roberts \& Tweedie 1996]

Starting point: The reverse direction! From optimization to sampling

[Dikin 1967, Nemivroski 1990]

Sampling from polytopes

[Kannan and Narayanan 2012]

Motivation for current work: Better understanding of sampling for continuous spaces

- Metropolis Hastings Algorithms [1953, 1970] literature rich with numerous algorithms
- Good understanding for sampling on discrete state space in literature
- Theoretical understanding for sampling from continuous spaces: an active area of research
- Explicit theoretical guarantees gain us
- Provably correct benchmark for comparison, sometime further insight into the pros and cons of the algorithm,
- Breadcrumbs for designing better algorithms

Today's talk:

Optimization subject to linear constraints
Sampling from Polytopes

Sampling

Convex Optimization

Log-Concave Sampling

Part I: Uniform Sampling on Polytopes

Joint work with Yuansi Chen, Martin Wainwright and Bin Yu

$$
\mathcal{X}=\left\{x \in \mathbb{R}^{d} \mid A x \leq b\right\} \begin{aligned}
& n \text { linear constraints } \\
& d \text { dimensions } \\
& n>d \\
& \\
& A \text { and } b \text { are known }
\end{aligned}
$$

Part I: Uniform Sampling on Polytopes

Joint work with Yuansi Chen, Martin Wainwright and Bin Yu

$$
\begin{aligned}
& \mathcal{X}=\left\{x \in \mathbb{R}^{d} \mid A x \leq b\right\} \begin{array}{l}
n \text { linear constraints } \\
d \text { dimensions } \\
n>d
\end{array} \\
& \text { Applications in }
\end{aligned}
$$

- Statistical physics: Hard disk simulations
- Sampling contingency tables
- Mixed integer convex programming

Uniform sampling: Existing methods

- Sampling on convex sets:
- Ball Walk [Lovász and Simonovits 1990, 1992, 1993]
- Hit-and-run [Berbee et al. 1987, Bélisle et al. 1993, Lovász 1999, Lovász and Vempala 2003, 2004]
- Sampling on polytopes:
- Dikin Walk [Kannan and Narayanan 2012, Narayanan 2015, Sachdeva and Vishnoi 2016]
- Geodesic Walk [Lee and Vempala 2016], Riemannian Hamiltonian Monte Carlo [Lee and Vempala 2017]

Ball Walk [Lovász and Simonovits 1990]

- Propose a uniform point in a ball around x
- Reject if outside the polytope, else move to it
- In case of rejection, define next state as x

$$
z \sim \operatorname{Unif}\left[\mathbb{B}\left(x, \frac{c}{\sqrt{d}}\right)\right]
$$

Ball walk mixes slowly for sharp sets

- Many rejections near sharp corners

Ball walk mixes slowly for sharp sets

- Mixing time depends on conditioning of the set

$$
\left\|P\left(x_{k}\right)-\pi\right\|_{\mathrm{TV}} \leq \delta
$$

- Number of steps $k \geq \mathcal{O}\left(\frac{d^{2}}{\delta^{2}} \frac{R_{\text {out }}^{2}}{R_{\mathrm{in}}^{2}}\right)$
- Per step cost $=\mathcal{O}(n d)$

Ball walk mixes slowly for sharp sets

- Mixing time depends on conditioning of the set

$$
\left\|P\left(x_{k}\right)-\pi\right\|_{\mathrm{TV}} \leq \delta
$$

- Number of steps $k \geq \mathcal{O}\left(\frac{d^{2}}{\delta^{2}} \frac{R_{\mathrm{out}}^{2}}{R_{\mathrm{in}}^{2}}\right)$
- Per step cost $=\mathcal{O}(n d)$

Conditioning ratio: Unknown
Can be exponential in d

Improving Ball Walk: Adaptive ellipsoids?

Dikin Walk [Kannan and Narayanan 2012]

- Based on log barrier for polytope used in interior point methods [Dikin 1967, Nemirovski 1990]

Dikin Walk [Kannan and Narayanan 2012]

- Propose $z \sim \mathcal{N}\left(x, \frac{1}{d} \mathcal{D}_{x}^{-1}\right)$

- The inverse covariance defined by the Hessian of the log barrier

$$
\begin{aligned}
\mathcal{D}_{x} & \propto \sum_{i=1}^{n} \frac{a_{i} a_{i}^{\top}}{\left(b_{i}-a_{i}^{\top} x\right)^{2}} \\
A & =\left[\begin{array}{c}
-a_{1}^{\top}- \\
-a_{2}^{\top}- \\
\vdots \\
-a_{n}^{\top}-
\end{array}\right]
\end{aligned}
$$

Dikin Walk [Kannan and Narayanan 2012]

- Propose $z \sim \mathcal{N}\left(x, \frac{1}{d} \mathcal{D}_{x}^{-1}\right)$

- Reject z if it is outside the set
- Otherwise, accept z with probability

$$
P(\text { accept } z)=\min \left\{1, \frac{P(z \rightarrow x)}{P(x \rightarrow z)}\right\}
$$

- In case of rejection, define next state as x

Upper bounds on mixing times

$$
\left\|P\left(x_{k}\right)-\pi\right\|_{\mathrm{TV}} \leq \delta
$$

Ball Walk Dikin Walk

\#steps (k)

$$
\begin{array}{l|l}
\frac{d^{2}}{\delta^{2}} \frac{R_{\mathrm{out}}^{2}}{R_{\mathrm{in}}^{2}} & n d \log \frac{1}{\delta} \\
& \begin{array}{l}
n=\# \text { linear constraints } \\
\\
\end{array} \\
& n>d \\
& \delta=\text { accuracy }
\end{array}
$$

cost/step
$n d$
$n d^{2} \quad \frac{R_{\text {out }}}{R_{\text {in }}}=$ conditioning

Upper bounds on mixing times

$$
\left\|P\left(x_{k}\right)-\pi\right\|_{\mathrm{TV}} \leq \delta
$$

Ball Walk Dikin Walk
\#steps (k)

$$
\frac{d^{2}}{\delta^{2}} \frac{R_{\mathrm{out}}^{2}}{R_{\mathrm{in}}^{2}} \quad n d \log \frac{1}{\delta}
$$

$$
\text { What if } n \gg d ?
$$

cost/step

$$
n d
$$

$$
n d^{2}
$$

A closer look at Dikin walk: Proposals shrink with \# constraints

Square, 4 constraints
\square Dikin

Square, overparameterized
\square Dikin
θ

-
[Similar argument holds even when the set is not overparameterized.]

How to improve the Dikin walk?: Even better ellipsoids?

Put weights on constraints

$$
D_{x}=\sum_{i=1}^{n} \frac{a_{i} a_{i}^{\top}}{\left(b_{i}-a_{i}^{\top} x\right)^{2}} \quad \mathcal{V}_{x}=\sum_{i=1}^{n} w_{i}(x) \frac{a_{i} a_{i}^{\top}}{\left(b_{i}-a_{i}^{\top} x\right)^{2}}
$$

Hessians of weighted barriers in optimization

Our work: Exploiting improved barriers for sampling

[Kannan and Narayanan 2012]
Dikin Proposal

$$
\begin{aligned}
z & \sim \mathcal{N}\left(x, \frac{1}{\mathrm{~d}} \mathcal{D}_{\mathrm{x}}^{-1}\right) \\
\mathcal{D}_{x} & \propto \sum_{i=1}^{n} \frac{a_{i} a_{i}^{\top}}{\left(b_{i}-a_{i}^{\top} x\right)^{2}}
\end{aligned}
$$

[Chen, D., Wainwright and Yu 2017]
Vaidya Proposal

$$
\begin{aligned}
z & \sim \mathcal{N}\left(x, \frac{1}{\sqrt{n d}} \mathcal{V}_{x}^{-1}\right) \\
\mathcal{V}_{x} & \propto \sum_{i=1}^{n}\left(\sigma_{x, i}+\frac{d}{n}\right) \frac{a_{i} a_{i}^{\top}}{\left(b_{i}-a_{i}^{\top} x\right)^{2}} \\
\sigma_{x, i} & =\frac{a_{i}^{\top} \mathcal{D}_{x}^{-1} a_{i}}{\left(b_{i}-a_{i}^{\top} x\right)^{2}}
\end{aligned}
$$

Our work:
 Exploiting improved barriers for sampling

[Kannan and Narayanan 2012]

Dikin Proposal
$z \sim \mathcal{N}\left(x, \frac{1}{\mathrm{~d}} \mathcal{D}_{\mathrm{x}}^{-1}\right)$

$$
\mathcal{D}_{x} \propto \sum_{i=1}^{n} \frac{a_{i} a_{i}^{\top}}{\left(b_{i}-a_{i}^{\top} x\right)^{2}}
$$

[Chen, D., Wainwright and Yu 2017]
Vaidya Proposal

$$
\begin{aligned}
z & \sim \mathcal{N}\left(x, \frac{1}{\sqrt{n d}} \mathcal{V}_{x}^{-1}\right) \\
\mathcal{V}_{x} & \propto \sum_{i=1}^{n}\left(\sigma_{x, i}+\frac{d}{n}\right) \frac{a_{i} a_{i}^{\top}}{\left(b_{i}-a_{i}^{\top} x\right)^{2}} \\
\sigma_{x, i} & =\frac{a_{i}^{\top} \mathcal{D}_{x}^{-1} a_{i}}{\left(b_{i}-a_{i}^{\top} x\right)^{2}}
\end{aligned}
$$

Inspiration from Optimization:

Log Barrier Method
[Dikin 1967, Nemirovski 1990]

Volumetric Barrier Method
[Vaidya 1993]

Our work: Exploiting improved barriers for sampling

[Kannan and Narayanan 2012]

Dikin Proposal

$$
\begin{gathered}
z \sim \mathcal{N}\left(x, \frac{1}{\mathrm{~d}} \mathcal{D}_{\mathrm{x}}^{-1}\right) \\
\mathcal{D}_{x} \propto \sum_{i=1}^{n} \frac{a_{i} a_{i}^{\top}}{\left(b_{i}-a_{i}^{\top} x\right)^{2}} \\
\uparrow
\end{gathered}
$$

Unit weight, sums to n
[Chen, D., Wainwright and Yu 2017]
Vaidya Proposal

$$
\begin{aligned}
z & \sim \mathcal{N}\left(x, \frac{1}{\sqrt{n d}} \mathcal{V}_{x}^{-1}\right) \\
\mathcal{V}_{x} & \propto \sum_{i=1}^{n}\left(\sigma_{x, i}+\frac{d}{n}\right) \frac{a_{i} a_{i}^{\top}}{\left(b_{i}-a_{i}^{\top} x\right)^{2}} \\
\sigma_{x, i} & =\frac{a_{i}^{\top} \mathcal{D}_{x}^{-1} a_{i}}{\left(b_{i}-a_{i}^{\top} x\right)^{2}}
\end{aligned}
$$

$[0,1]$ valued, sums to d

Vaidya vs Dikin proposals

Square, 4 constraints

Dikin
Vaidya

\square Dikin
\square Vaidya

(a)

Upper bounds:
 Vaidya walk mixes in fewer steps!

$$
\left\|P\left(x_{k}\right)-\pi\right\|_{\mathrm{TV}} \leq \delta
$$

Ball Walk	Dikin Walk	Vaidya Walk		
\#Steps	$\frac{d^{2}}{\delta^{2}} \frac{R_{\max }^{2}}{R_{\min }^{2}}$	$n d \log \frac{1}{\delta}$	$n^{0.5} d^{1.5} \log \frac{1}{\delta}$	n constraints d dimensions $\mathrm{n}>\mathrm{d}$
Per Step Cost	$n d$	$n d^{2}$	$n d^{2}$	similar cost/step as Dikin walk

Upper bounds:
 Vaidya walk mixes in fewer steps!

$$
\left\|P\left(x_{k}\right)-\pi\right\|_{\mathrm{TV}} \leq \delta
$$

	Ball Walk	Dikin Walk	Vaidya Walk	
\#Steps	$\frac{d^{2}}{\delta^{2}} \frac{R_{\text {max }}^{2}}{R_{\text {min }}^{2}}$	$n d \log \frac{1}{\delta}$	$n^{0.5} d^{1.5} \log \frac{1}{\delta}$	n constraints d dimensions $\mathrm{n}>\mathrm{d}$
			What if $n \gg d$?	
Per Step Cost	$n d$	$n d^{2}$	$n d^{2}$	$\begin{aligned} & \text { similar } \\ & \text { cost/step as } \\ & \text { Dikin walk } \end{aligned}$

Simulation: Dikin Walk vs Vaidya Walk

\#dimensions = 2

Small \#constraints: No Winner!

\#constraints = 4
$\mathrm{k}=$ \#iterations
\#experiments = 200

Dikin
Walk
$k=500$
$k=1000$

Vaidya Walk

What if $n \gg d$? Vaidya walk wins!

\#constraints = 2048
$\mathrm{k}=$ \#iterations
\#experiments = $\mathbf{2 0 0}$

Dikin Walk
$k=100$

Scaling with \#constraints

\#constraints (n)

Can we improve further?

[Kannan and
Narayanan 2012]
Dikin Proposal
$z \sim \mathcal{N}\left(x, \frac{1}{\mathrm{~d}} \mathcal{D}_{\mathrm{x}}^{-1}\right)$
$\mathcal{D}_{x} \propto \sum_{i=1}^{n} \frac{a_{i} a_{i}^{\top}}{\left(b_{i}-a_{i}^{\top} x\right)^{2}}$
$\mathcal{V}_{x} \propto \sum_{i=1}^{n}\left(\sigma_{x, i}+\frac{d}{n}\right) \frac{a_{i} a_{i}^{\top}}{\left(b_{i}-a_{i}^{\top} x\right)^{2}}$
$\sigma_{x, i}=\frac{a_{i}^{\top} \mathcal{D}_{x}^{-1} a_{i}}{\left(b_{i}-a_{i}^{\top} x\right)^{2}}$

Inspiration from Optimization:

Log Barrier Method [Dikin 1967, Nemirovski 1990]

Volumetric Barrier Method [Vaidya 1993]

Yes..via the John Walk!

[Kannan and
Narayanan 2012]
Dikin Proposal
$z \sim \mathcal{N}\left(x, \frac{1}{\mathrm{~d}} \mathcal{D}_{\mathrm{x}}^{-1}\right)$
$\mathcal{D}_{x} \propto \sum_{i=1}^{n} \frac{a_{i} a_{i}^{\top}}{\left(b_{i}-a_{i}^{\top} x\right)^{2}}$
$\mathcal{V}_{x} \propto \sum_{i=1}^{n}\left(\sigma_{x, i}+\frac{d}{n}\right) \frac{a_{i} a_{i}^{\top}}{\left(b_{i}-a_{i}^{\top} x\right)^{2}}$
$\sigma_{x, i}=\frac{a_{i}^{\top} \mathcal{D}_{x}^{-1} a_{i}}{\left(b_{i}-a_{i}^{\top} x\right)^{2}}$
[Chen, D.,
Wainwright, Yu 2017]
John Proposal
$z \sim \mathcal{N}\left(x, \frac{1}{d^{1.5}} \mathcal{J}_{x}^{-1}\right)$
$\mathcal{J}_{x} \propto \sum_{i=1}^{n} j_{x, i} \frac{a_{i} a_{i}^{\top}}{\left(b_{i}-a_{i}^{\top} x\right)^{2}}$
$j_{x, i}=$ convex program

Inspiration from Optimization:

Log Barrier Method [Dikin 1967, Nemirovski 1990]

Volumetric Barrier
Method [Vaidya 1993]

John's Ellipsoidal Algorithm
[John 1948, Lee and Sidford 2015]

John walk is "faster" for large \#constraints (n)

$$
\left\|P\left(x_{k}\right)-\pi\right\|_{\mathrm{TV}} \leq \delta
$$

John walk is "faster" for large \#constraints (n)

$$
\left\|P\left(x_{k}\right)-\pi\right\|_{\mathrm{TV}} \leq \delta
$$

Per Step Cost

$n d^{2}$

$n d^{2}$
$n d^{2} \log ^{2} n$

John walk is "faster" for large \#constraints (n)

$$
\left\|P\left(x_{k}\right)-\pi\right\|_{\mathrm{TV}} \leq \delta
$$

Conjecture: Faster mixing for John walk

$$
\left\|P\left(x_{k}\right)-\pi\right\|_{\mathrm{TV}} \leq \delta
$$

	Dikin Walk	Vaidya Walk	John Walk
\#Steps	$n d \log \frac{1}{\delta}$	$n^{0.5} d^{1.5} \log \frac{1}{\delta}$	$d^{2} \log ^{c} \frac{n}{d} \log \frac{1}{\delta}$

Per Step Cost

$$
n d^{2}
$$

$$
n d^{2}
$$

$$
n d^{2} \log ^{2} n
$$

Proof Outline

Transition distributions

Proof Outline

Proof Outline

Transition distributions

Proof Outline

Transition distributions

Proof Outline

Proof Outline

Transition distributions

$$
\rho=\frac{1}{2}
$$

transition distribution due to accept-reject step

$$
\left\|\mathcal{T}_{x}-\mathcal{T}_{y}\right\|_{\mathrm{TV}} \leq\left\|\mathcal{T}_{x}-\mathcal{P}_{x}\right\|_{\mathrm{TV}}+\left\|\mathcal{T}_{y}-\mathcal{P}_{y}\right\|_{\mathrm{TV}}
$$

$$
+\left\|\mathcal{P}_{x}-\mathcal{P}_{y}\right\|_{\mathrm{TV}} \longleftarrow
$$

Easy part: Analyzing difference in the proposal distributions

$$
\begin{gathered}
\mathcal{P}_{x}=\mathcal{N}\left(x, \frac{c}{\sqrt{n d}} \mathcal{V}_{x}^{-1}\right) \\
\mathcal{V}_{x}=\sum_{i=1}^{n}\left(\sigma_{x, i}+\frac{d}{n}\right) \frac{a_{i} a_{i}^{\top}}{\left(b_{i}-a_{i}^{\top} x\right)^{2}}
\end{gathered}
$$

$\left\|\mathcal{P}_{x}-\mathcal{P}_{y}\right\|_{\mathrm{TV}}$ is small, if $\begin{gathered}x \\ \mathcal{V}_{x} \approx y \\ \mathcal{V}_{y}\end{gathered} \longrightarrow \begin{gathered}\text { Smoothness } \\ \text { of weights }\end{gathered}$

Hard part: Analyzing the accept-reject step

Difference caused by accept-reject step at each point

$$
\left\|\mathcal{T}_{x}-\mathcal{P}_{x}\right\|_{\mathrm{TV}} \leq 2 \mathbb{P}(z \notin \mathcal{X})+\mathbb{E}\left[\min \left\{1, \frac{P(z \rightarrow x)}{P(x \rightarrow z)}\right\}\right]
$$

Hard part: Analyzing the accept-reject step

Difference caused by accept-reject step at each point

Easy!

$$
\left\|\mathcal{T}_{x}-\mathcal{P}_{x}\right\|_{\mathrm{TV}} \leq 2 \mathbb{P}(z \notin \mathcal{X})+\mathbb{E}\left[\min \left\{1, \frac{P(z \rightarrow x)}{P(x \rightarrow z)}\right\}\right]
$$

Hard part: Analyzing the accept-reject step

Difference caused by accept-reject step at each point

Randomness in \mathbf{z} +
Smoothness of weights

Taylor Series +
Gaussian polynomial tail bounds

Part I Summary: Sampling meets optimization

Fast MCMC algorithms on polytopes

Future Directions

Part II: Log-Concave Sampling

Joint work with Yuansi Chen, Martin Wainwright and Bin Yu

$$
\pi(x) \propto e^{-f(x)} \quad \text { where } f: \mathbb{R}^{d} \rightarrow \mathbb{R} \text { is convex }
$$

Part II: Log-Concave Sampling

Joint work with Yuansi Chen, Martin Wainwright and Bin Yu

$$
\pi(x) \propto e^{-f(x)} \quad \text { where } f: \mathbb{R}^{d} \rightarrow \mathbb{R} \text { is convex }
$$

- Examples include Gaussian distributions, Laplace distributions, exponential and logistic distributions
- Frequentist set ups: form confidence intervals around the MLE
- Bayesian inference and inverse problems: MAP and credible interval estimation
- Large scale stochastic/Bayesian optimization

From optimization to sampling

- Optimization: find the global minimum (or a stationary point)

$$
\min _{x \in \mathbb{R}^{d}} f(x)
$$

- Gradient descent:

$$
x_{k+1}=x_{k}-h \nabla f\left(x_{k}\right)
$$

- Stochastic Gradient Algorithm:

$$
X_{k+1}=X_{k}-h \nabla f\left(X_{k}\right)+h \xi_{k+1}
$$

- Sampling: draw samples from the density

$$
\pi(x) \propto e^{-f(x)}
$$

- Unadjusted Langevin algorithm (ULA):

$$
X_{k+1}=X_{k}-h \nabla f\left(X_{k}\right)+\sqrt{2 h} \xi_{k+1}
$$

$$
\xi_{k} \stackrel{i . i . d .}{\sim} \mathcal{N}\left(0, I_{d \times d}\right)
$$

[^0]
Langevin algorithms: Origins?

- Classical Langevin stochastic differential equation

$$
d X_{t}=-\nabla f\left(X_{t}\right) d t+\sqrt{2} d B_{t} \text { where } B_{t} \text { is standard Brownian motion }
$$

- Under mind regularity conditions: as $t \rightarrow \infty$, distribution of X_{t} converges to $\pi(x) \propto e^{-f(x)}$

$$
\left\|P\left(X_{t}\right)-\pi\right\|_{\mathrm{TV}} \xrightarrow{t \uparrow \infty} 0
$$

- ULA updates: forward discretization of the Langevin SDE

$$
\begin{aligned}
& X_{k+1}-X_{k}=-h \nabla f\left(X_{k}\right)+\sqrt{2 h} \xi_{k+1} \\
& \text { (no accept-reject step) }
\end{aligned}
$$

ULA performance: Large step size leads to large bias!

Trace-plot for one run

ULA performance: Small step mixes slowly!

Histogram (multiple runs)
upon convergence

Trace-plot for one run

ULA: Step-size and speed/bias tradeoff

How does one remove the asymptotic bias?

- Via the classical Metropolis-Hastings correction step
- Metropolis adjusted Langevin algorithm (MALA):

1. Use ULA updates as proposals

$$
z=x-h \nabla f(x)+\sqrt{2 h} \xi
$$

2. Accept z with probability

$$
\min \left\{1, \frac{e^{-f(z)}}{e^{-f(x)}} \frac{P(z \rightarrow x)}{P(x \rightarrow z)}\right\}
$$

3. In case of rejection, stay at x

MALA: Fast convergence with no bias

Langevin algorithms: Traditional wisdom

- Rich body of work for Langevin algorithms
- ULA and MALA first suggested by Parisi in 1981 and formally introduced by Grenander \& Miller in 1994
- Sufficient conditions for convergence first established by Roberts and Tweedie in 1996

Langevin algorithms: Prior work

Type of results	Existing Literature
Discretization \& integration errors,	[Talay \& Tubaro '90],
Ergodicity,	[Meyn \& Tweedie '95],
Asymptotic convergence	[Roberts \& Rosenthal '96, '01, '02]

- Find conditions on π and a Lyapunov function V that contracts outside a ball

$$
E\left[V\left(X_{1}\right) \mid X_{0}=x\right] \leq \lambda V(x)+C \mathbb{I}_{\mathbb{B}(0, R)}(x), \quad \lambda<1
$$

sufficient to establish geometric ergodicity

$$
\left\|P\left(x_{k} \mid x_{0}=x\right)-\pi\right\|_{\mathrm{TV}} \leq V(x) R \rho^{k} \quad \text { for some } \rho<1 \text { and } R>0
$$

For limited class of distributions, non-explicit rates,

Langevin algorithms: Related work

Type of results	Existing Literature
Discretization \& integration errors, Ergodicity, Asymptotic convergence	[Talay \& Tubaro '90], [Meyn \& Tweedie '95], [Roberts \& Rosenthal ‘96, ‘01, ‘02]
Revived interest for nonasymptotic results	[Bou-Rabee \& Hairer '09], [Roberts \& Rosenthal '14]
Explicit non-asymptotic bounds	[Dalalyan '15, '17], [Durmus \& Moulines '15, '16], [Cheng \& Bartlett '17]

Recent work uses coupling arguments for diffusions

Mixing time bounds: Strongly log-concave

$$
\left\|P\left(x_{k}\right)-\pi\right\|_{\mathrm{TV}} \leq \delta \quad \pi(x) \propto e^{-f(x)}
$$

Algorithm
f is L-smooth and
m-strongly-convex

$$
d\left(\frac{L}{m}\right)^{2} \frac{1}{\delta^{2}}
$$

Mixing time bounds: Strongly log-concave

$$
\left\|P\left(x_{k}\right)-\pi\right\|_{\mathrm{TV}} \leq \delta \quad \pi(x) \propto e^{-f(x)}
$$

Algorithm	ULA [Dalalyan 2016]	MALA [D., Chen, Wainwright, Yu 2018]
fis L-smooth and m-strongly-convex	$d\left(\frac{L}{m}\right)^{2} \frac{1}{\delta^{2}}$	$d\left(\frac{L}{m}\right) \log \frac{1}{\delta}$
64		

Mixing time bounds: Strongly log-concave

$$
\left\|P\left(x_{k}\right)-\pi\right\|_{\mathrm{TV}} \leq \delta \quad \pi(x) \propto e^{-f(x)}
$$

Algorithm	ULA [Dalalyan 2016]	MALA [D., Chen, Wainwright, Yu 2018]
f is L-smooth and m-strongly-convex	$d\left(\frac{L}{m}\right)^{2} \frac{1}{\delta^{2}}$	$d\left(\frac{L}{m}\right) \log \frac{1}{\delta}$
	Mixing time of MALA has - exponentially better dependence on accuracy δ - better dependence on conditioning L/m	

Mixing time bounds: Strongly and weakly log-concave

$$
\left\|P\left(x_{k}\right)-\pi\right\|_{\mathrm{TV}} \leq \delta \quad \pi(x) \propto e^{-f(x)}
$$

Algorithm
f is L-smooth and
m-strongly-convex

$$
d\left(\frac{L}{m}\right)^{2} \frac{1}{\delta^{2}}
$$

$$
d\left(\frac{L}{m}\right) \log \frac{1}{\delta}
$$

f is convex and L-smooth

$$
d^{3} L^{2} \frac{1}{\delta^{4}} \quad \quad d^{2} L^{1.5} \frac{1}{\delta^{1.5}}
$$

Mixing time bounds: Strongly and weakly log-concave

$$
\left\|P\left(x_{k}\right)-\pi\right\|_{\mathrm{TV}} \leq \delta \quad \pi(x) \propto e^{-f(x)}
$$

Algorithm	ULA [Dalalyan 2016]	MALA [D., Chen, Wainwright, Yu 2018]
f is L-smooth and m-strongly-convex	$d\left(\frac{L}{m}\right)^{2} \frac{1}{\delta^{2}}$	$d\left(\frac{L}{m}\right) \log \frac{1}{\delta}$
f is convex and L-smooth	$d^{3} L^{2} \frac{1}{\delta^{4}}$	$d^{2} L^{1.5} \frac{1}{\delta^{1.5}}$

The difference between MALA and ULA: An informal proof

- Both algorithms have a good spectral gap in a high probability region

The difference between MALA and ULA: An informal proof

- Both algorithms have a good spectral gap in a high probability region
- ULA has a biased stationary distribution

Bias
$\left\|P\left(x_{k}\right)-\pi\right\|_{\mathrm{TV}} \leq\left\|P\left(x_{k}\right)-\pi_{\mathrm{ULA}}\right\|_{\mathrm{TV}}+\left\|\pi_{\mathrm{ULA}}-\pi\right\|_{\mathrm{TV}}$

The difference between MALA and ULA: An informal proof

- Both algorithms have a good spectral gap in a high probability region
- ULA has a biased stationary distribution

Bias
$\left\|P\left(x_{k}\right)-\pi\right\|_{\mathrm{TV}} \leq\left\|P\left(x_{k}\right)-\pi_{\mathrm{ULA}}\right\|_{\mathrm{TV}}+\left\|\pi_{\mathrm{ULA}}-\pi\right\|_{\mathrm{TV}}$

The difference between MALA and ULA: An informal proof

- Both algorithms have a good spectral gap in a high probability region
- ULA has a biased stationary distribution

Bias

$$
\begin{gathered}
\left\|P\left(x_{k}\right)-\pi\right\|_{\mathrm{TV}} \leq\left\|P\left(x_{k}\right)-\pi_{\mathrm{ULA}}\right\|_{\mathrm{TV}}+\left\|\pi_{\mathrm{ULA}}-\pi\right\|_{\mathrm{TV}} \\
\mathcal{O}\left(e^{-k h}\right) \leq \delta / 2 \quad \mathcal{O}(\sqrt{h}) \leq \delta / 2 \\
k \geq \mathcal{O}\left(\frac{1}{h} \log \frac{1}{\delta}\right)=\mathcal{O}\left(\frac{1}{\delta^{2}}\right)
\end{gathered}
$$

The difference between MALA and ULA: An informal proof

- Both algorithms have a good spectral gap in a high probability region
- ULA has a biased stationary distribution

Bias

$$
\begin{gathered}
\left\|P\left(x_{k}\right)-\pi\right\|_{\mathrm{TV}} \leq\left\|P\left(x_{k}\right)-\pi_{\mathrm{ULA}}\right\|_{\mathrm{TV}}+\left\|\pi_{\mathrm{ULA}}-\pi\right\|_{\mathrm{TV}} \\
\mathcal{O}\left(e^{-k h}\right) \leq \delta / 2 \quad \mathcal{O}(\sqrt{h}) \leq \delta / 2 \\
k \geq \mathcal{O}\left(\frac{1}{h} \log \frac{1}{\delta}\right)=\mathcal{O}\left(\frac{1}{\delta^{2}}\right)
\end{gathered}
$$

- MALA is unbiased: larger step size implies faster mixing

Part II: Summary

Future Directions

No gradient:
Metropolis random walk
O(d) slower!
[D., Chen, Wainwright, Yu 2018]

With Hessian:
Can we have a faster algorithm?

Higher order methods:
Hamiltonian Monte Carlo
Underdamped Langevin
[Cheng et al. 2017, Smith et al. 2018]

Framework for lower bounds on mixing times?

General/Mixture distributions:
Non-log concave sampling
(Simulated Tempering)

Summary: Connections

Gradient Methods \rightarrow Langevin Algorithms

Summary: Findings

So far...

- Mixing times

- Function specific mixing times:

Estimating mean and covariance

Looking forward..

- Learning from data
- Mixing times

- Function specific mixing times:

Estimating mean and covariance

Looking forward..

Algorithmic and statistical guarantees for learning mixture models from samples when number of mixtures is not known

- Learning from data

- Function specific mixing times: Estimating mean and covariance

Looking forward..

Algorithmic and statistical guarantees for learning mixture models from samples when number of mixtures is not known

Data driven manifold learning: Low dimensional structure in deep networks

- Function specific mixing times: Estimating mean and covariance

Looking forward..

Algorithmic and statistical guarantees for learning mixture models from samples when number of mixtures is not known

Data driven manifold learning:
Low dimensional structure in deep networks

Will the model generalize or not? Choice of kernel matters!

- Mixing times
- Function specific mixing times: Estimating mean and covariance

Looking forward..

Algorithmic and statistical guarantees for learning mixture models from samples when number of mixtures is not known

Data driven manifold learning:
Low dimensional structure in deep networks

Will the model generalize or not? Choice of kernel matters!

- Mixing times

- Function specific mixing times: Estimating mean and covariance

References

Fast MCMC algorithms on polytopes https://arxiv.org/abs/1710.08165

Log-concave sampling: Metropolis Hastings
Algorithms are fast! http://arxiv.org/abs/1801.02309

[^0]: [Parisi 1981, Grenander \& Miller 1994, Roberts \& Tweedie 1996]

