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Random Sampling

• We consider the problem of drawing random samples 
from a given density (known up-to proportionality) 
 
 

X1, X2, . . . , Xm ⇠ ⇡
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Sampling: A fundamental task

X1, X2, . . . , Xm ⇠ ⇡

E [g(X)] =

Z
g(x)⇡(x)dx ⇡ 1

m

mX

i=1

g(Xi)

Monte Carlo 
Approximations 

Rare event 
simulations 

Bayesian 
inference

Sampling Integration

Sampling Optimization

sample from e�g(x)/T

Zeroth order 
optimization 

Escaping 
saddle points 

Simulated 
annealing

min
x

g(x)
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• Sampling: draw samples from the 
density


• Unadjusted Langevin algorithm 
(ULA):

• Find the global minimum (or a 
stationary point)


• Gradient descent: 
 

• Stochastic Gradient Algorithm:

Starting point: The reverse direction! 
From optimization to sampling

⇡(x) / e�f(x)

Xk+1 = Xk � hrf(Xk) +
p
2h⇠k+1

⇠k
i.i.d.⇠ N (0, Id⇥d)

[Parisi 1981, Grenander & Miller 1994, 
Roberts & Tweedie 1996]

min
x2Rd

f(x)

xk+1 = xk � hrf(xk)

Xk+1 = Xk � hrf(Xk) + h⇠k+1

Optimization Sampling
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Starting point: The reverse direction!  
From optimization to sampling

x1
x2

x3

x0

x4

[Dikin 1967, Nemivroski 1990] [Kannan and Narayanan 2012]

!5

Interior point 
method for linear 

programming

Sampling from 
polytopes



Motivation for current work:  
Better understanding of sampling for 
continuous spaces

• Metropolis Hastings Algorithms [1953, 1970] literature rich with 
numerous algorithms


• Good understanding for sampling on discrete state space in literature


• Theoretical understanding for sampling from continuous spaces: an 
active area of research


• Explicit theoretical guarantees gain us


• Provably correct benchmark for comparison, sometime further insight 
into the pros and cons of the algorithm,


• Breadcrumbs for designing better algorithms 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Today’s talk:  

Optimization Sampling

Optimization subject 
to linear constraints

Sampling from 
Polytopes

Convex Optimization Log-Concave 
Sampling
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Part I: Uniform Sampling on Polytopes
Joint work with Yuansi Chen, Martin Wainwright and Bin Yu

X =

⇢
x 2 Rd

���� Ax  b

�

n=6 n=12n=4

!8

n linear constraints

d dimensions

n > d

A and b are known



Part I: Uniform Sampling on Polytopes

• Applications in 


• Statistical physics: Hard disk simulations


• Sampling contingency tables


• Mixed integer convex programming

Joint work with Yuansi Chen, Martin Wainwright and Bin Yu

X =

⇢
x 2 Rd

���� Ax  b

�

!9

n linear constraints

d dimensions

n > d

A and b are known



Uniform sampling: Existing methods

• Sampling on convex sets: 

• Ball Walk [Lovász and Simonovits 1990, 1992, 1993]

• Hit-and-run [Berbee et al. 1987, Bélisle et al. 1993, Lovász 

1999, Lovász and Vempala 2003, 2004]


• Sampling on polytopes:

• Dikin Walk [Kannan and Narayanan 2012, Narayanan 2015, 

Sachdeva and Vishnoi 2016]


• Geodesic Walk [Lee and Vempala 2016], Riemannian Hamiltonian 
Monte Carlo [Lee and Vempala 2017]
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Ball Walk [Lovász and Simonovits 1990]

• Propose a uniform point in a ball around x


• Reject if outside the polytope, else move to it


• In case of rejection, define next state as x

zx

z
x z ⇠ Unif


B
✓
x,

cp
d

◆�
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z

z

• Many rejections near sharp corners

Ball walk mixes slowly for sharp sets
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• Mixing time depends on conditioning of the set

Rout

Rin

O (nd)

• Number of steps  


• Per step cost =

Ball walk mixes slowly for sharp sets

k � O

✓
d2

�2
R2

out

R2
in

◆
kP (xk)� ⇡kTV  �
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• Mixing time depends on conditioning of the set

Rout

Rin

O (nd)

• Number of steps  


• Per step cost =

Conditioning ratio: 
Unknown 

Can be exponential in d 

Ball walk mixes slowly for sharp sets

k � O

✓
d2

�2
R2

out

R2
in

◆
kP (xk)� ⇡kTV  �
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Improving Ball Walk: Adaptive ellipsoids?

z

x

z

x

x

z
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Dikin Walk [Kannan and Narayanan 2012]

• Based on log barrier for polytope used in interior point 
methods [Dikin 1967, Nemirovski 1990]


• Another variant 

• Accept Reject: 
 
 

z

x

z

x

x

z
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z

x

z

x

x

z

• Propose 


• The inverse covariance defined 
by the Hessian of the log barrier

A =

2

6664

—a>1 —
—a>2 —

...
—a>n—

3

7775

Dx /
nX

i=1

aia>i
(bi � a>i x)

2

z ⇠ N
✓
x,

1

d
D�1

x

◆

Dikin Walk [Kannan and Narayanan 2012]
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z

x

z

x

x

z

• Propose


• Reject z if it is outside the 
set


• Otherwise, accept z with 
probability 
 

• In case of rejection, define 
next state as x

P (accept z) = min

⇢
1,

P (z ! x)

P (x ! z)

�

z ⇠ N
✓
x,

1

d
D�1

x

◆
Dikin Walk [Kannan and Narayanan 2012]
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Upper bounds on mixing times

Ball Walk Dikin Walk

#steps (k)

cost/step nd nd2

nd log
1

�

d2

�2
R2

out

R2
in

kP (xk)� ⇡kTV  �

n = #linear constraints

d = #dimensions

n > d

� = accuracy

Rout

Rin
= conditioning
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Upper bounds on mixing times

Ball Walk Dikin Walk ? ?

#steps (k)

cost/step nd nd2

nd log
1

�

d2

�2
R2

out

R2
in

kP (xk)� ⇡kTV  �

What if n � d?
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A closer look at Dikin walk: 
Proposals shrink with # constraints

°1.0 °0.5 0.0 0.5 1.0
°1.0

°0.5

0.0

0.5

1.0

Dikin

°1.0 °0.5 0.0 0.5 1.0
°1.0

°0.5

0.0

0.5

1.0

Dikin

Square, overparameterizedSquare, 4 constraints

[Similar argument holds even when the set is not overparameterized.]
!21



How to improve the Dikin walk?: 
Even better ellipsoids?

Dikin Proposal

z ⇠ N
✓
x,

r2

d
D�1

x

◆

Dx =
nX

i=1

aia>i
(bi � a>i x)

2

Put weights on constraints

Hessians of weighted barriers in optimization

Vx =
nX

i=1

wi(x)
aia>i

(bi � a>i x)
2
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[Kannan and Narayanan 2012]

Our work:  
Exploiting improved barriers for sampling

Dikin Proposal

z ⇠ N
✓
x,

1

d
D�1

x

◆

Dx /
nX

i=1

aia>i
(bi � a>i x)

2

[Chen, D., Wainwright and Yu 2017]

Vaidya Proposal

z ⇠ N
✓
x,

1p
nd

V�1
x

◆

Vx /
nX

i=1

✓
�x,i +

d

n

◆
aia>i

(bi � a>i x)
2

�x,i =
a>i D�1

x ai
(bi � a>i x)

2



[Kannan and Narayanan 2012]

Our work:  
Exploiting improved barriers for sampling

Dikin Proposal

z ⇠ N
✓
x,

1

d
D�1

x

◆

Dx /
nX

i=1

aia>i
(bi � a>i x)

2

Log Barrier Method 
[Dikin 1967, Nemirovski 1990]

Volumetric Barrier Method 
[Vaidya 1993]

[Chen, D., Wainwright and Yu 2017]

Vaidya Proposal

z ⇠ N
✓
x,

1p
nd

V�1
x

◆

Vx /
nX

i=1

✓
�x,i +

d

n

◆
aia>i

(bi � a>i x)
2

�x,i =
a>i D�1

x ai
(bi � a>i x)

2

Inspiration from Optimization:

!24



[Kannan and Narayanan 2012]

Our work:  
Exploiting improved barriers for sampling

Dikin Proposal

z ⇠ N
✓
x,

1

d
D�1

x

◆

Dx /
nX

i=1

aia>i
(bi � a>i x)

2

[Chen, D., Wainwright and Yu 2017]

Vaidya Proposal

z ⇠ N
✓
x,

1p
nd

V�1
x

◆

Vx /
nX

i=1

✓
�x,i +

d

n

◆
aia>i

(bi � a>i x)
2

�x,i =
a>i D�1

x ai
(bi � a>i x)

2

Unit weight, sums to n

[0, 1] valued, sums to d
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Vaidya vs Dikin proposals

°1.0 °0.5 0.0 0.5 1.0
°1.0

°0.5

0.0

0.5

1.0

Dikin

Vaidya

°1.0 °0.5 0.0 0.5 1.0
°1.0

°0.5

0.0

0.5

1.0

Dikin

Vaidya

Square, overparameterizedSquare, 4 constraints
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Ball Walk Dikin 
Walk

Vaidya 
Walk

#Steps

Per Step 
Cost

nd log
1

�
n0.5d1.5 log

1

�

nd nd2 nd2

d2

�2
R2

max

R2
min

kP (xk)� ⇡kTV  �

similar 
cost/step as 
Dikin walk 

n constraints 
d dimensions 

n > d

Upper bounds: 
Vaidya walk mixes in fewer steps!
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Ball Walk Dikin 
Walk

Vaidya 
Walk

#Steps

Per Step 
Cost

nd log
1

�
n0.5d1.5 log

1

�

nd nd2 nd2

d2

�2
R2

max

R2
min

kP (xk)� ⇡kTV  �

similar 
cost/step as 
Dikin walk 

n constraints 
d dimensions 

n > d

What if n � d?

!28

Upper bounds: 
Vaidya walk mixes in fewer steps!



/ n0.45

°1.0 °0.5 0.0 0.5 1.0
°1.0

°0.5

0.0

0.5

1.0

initial

°1.0 °0.5 0.0 0.5 1.0
°1.0

°0.5

0.0

0.5

1.0

target

Simulation: Dikin Walk vs Vaidya Walk

k = 0 k = 1

k = #iterations#dimensions = 2 #experiments = 200
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k=10 k=100 k=500 k=1000

Dikin 
Walk

Vaidya 
Walk

Small #constraints: No Winner!

#constraints = 4 k = #iterations #experiments = 200
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Dikin 
Walk

Vaidya 
Walk

#constraints = 2048

k=10 k=100 k=500 k=1000

             Vaidya walk wins!

k = #iterations #experiments = 200

What if n � d?
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Scaling with #constraints

/ n0.9

/ n0.45

101 102 103

n

101

102

103

k̂ m
ix

Dikin

Vaidya
/ n0.9

/ n0.45

#constraints (n)

Approx. 
Mixing Time
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Can we improve further?
[Chen, D., 

Wainwright, Yu 2017]
[Kannan and 

Narayanan 2012]
Vaidya Proposal

z ⇠ N
✓
x,

1p
nd

V�1
x

◆

Vx /
nX

i=1

✓
�x,i +

d

n

◆
aia>i

(bi � a>i x)
2

�x,i =
a>i D�1

x ai
(bi � a>i x)

2

Dikin Proposal

z ⇠ N
✓
x,

1

d
D�1

x

◆

Dx /
nX

i=1

aia>i
(bi � a>i x)

2

Log Barrier Method 
[Dikin 1967, Nemirovski 

1990]

Volumetric Barrier 
Method 

[Vaidya 1993]

Inspiration from Optimization:
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Yes..via the John Walk!
[Chen, D., 

Wainwright, Yu 2017]

John’s Ellipsoidal 
Algorithm 

[John 1948, Lee and Sidford 
2015]

[Kannan and 
Narayanan 2012]

Log Barrier Method 
[Dikin 1967, Nemirovski 

1990]

Vaidya Proposal

z ⇠ N
✓
x,

1p
nd

V�1
x

◆

Vx /
nX

i=1

✓
�x,i +

d

n

◆
aia>i

(bi � a>i x)
2

�x,i =
a>i D�1

x ai
(bi � a>i x)

2

Dikin Proposal

z ⇠ N
✓
x,

1

d
D�1

x

◆

Dx /
nX

i=1

aia>i
(bi � a>i x)

2

Volumetric Barrier 
Method 

[Vaidya 1993]

John Proposal

z ⇠ N
✓
x,

1

d1.5
J�1
x

◆

Jx /
nX

i=1

jx,i
aia>i

(bi � a>i x)
2

jx,i = convex program

[Chen, D., 
Wainwright, Yu 2017]

Inspiration from Optimization:
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John walk is “faster” for large #constraints (n)

Dikin Walk Vaidya Walk John Walk

#Steps

Per Step 
Cost

n0.5d1.5 log
1

�
d2.5 log4

n

d
log

1

�
nd log

1

�

kP (xk)� ⇡kTV  �

n = #constraints 
d = #dimensions 
n > d
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Dikin Walk Vaidya Walk John Walk

#Steps

Per Step 
Cost nd2 nd2 nd2 log2 n

n0.5d1.5 log
1

�
d2.5 log4

n

d
log

1

�
nd log

1

�

kP (xk)� ⇡kTV  �

John walk is “faster” for large #constraints (n)
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Dikin Walk Vaidya Walk John Walk

#Steps

Per Step 
Cost nd2 nd2 nd2 log2 n

n0.5d1.5 log
1

�
d2.5 log4

n

d
log

1

�
nd log

1

�

kP (xk)� ⇡kTV  �

John walk is “faster” for large #constraints (n)

What if n � d?
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Conjecture: Faster mixing for John walk

Dikin Walk Vaidya Walk John Walk

#Steps

Per Step 
Cost nd2 nd2 nd2 log2 n

nd log
1

�
n0.5d1.5 log

1

�
d2 logc

n

d
log

1

�

kP (xk)� ⇡kTV  �
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Proof Outline

Tx Ty

x y

Transition distributions

!39



Proof Outline

Tx Ty

x y

Transition distributions

!40

⇢
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Proof Outline

Tx Ty

x y

Transition distributions
⇢

�

Isoperimetry  
+ 

Conductance bounds for 
spectral gap

spectral gap � 1� ⇢2�2

2
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Proof Outline

Tx Ty

x y

Transition distributions
⇢

�

Isoperimetry  
+ 

Conductance bounds for 
spectral gap

spectral gap � 1� ⇢2�2

2

kP (xk)� ⇡kTV  � for k � O

✓
log(1/�)

�2⇢2

◆

!42



Proof Outline

Tx

Transition distributions

!43

Tx Ty

x y
�

kTx � TykTV  1
2 whenever d(x, y)  �

⇢ =
1

2

kTx � TykTV  kTx � PxkTV + kTy � PykTV

+ kPx � PykTV



Proof Outline

Tx

Transition distributions

!44

Tx Ty

x y
�

kTx � TykTV  kTx � PxkTV + kTy � PykTV

+ kPx � PykTV

⇢ =
1

2

Difference in proposal 
distributions at two points

Difference in proposal and 
transition distribution due to 

accept-reject step



Easy part: Analyzing difference in  
the proposal distributions

Px = N
✓
x,

cp
nd

V�1
x

◆

Vx =
nX

i=1

✓
�x,i +

d

n

◆
aia>i

(bi � a>i x)
2

kPx � Pyk2TV 
p
nd

c
(x� y)>Vx(x� y)� d+

dX

i=1

�i + log
1

�i

Vx ⇡ Vy

x ⇡ y
Smoothness 
of weights 

!45

kPx � PykTV is small, if



Hard part: Analyzing the accept-reject step

Difference caused by 
accept-reject step at 

each point

!46

kTx � PxkTV  2P(z 62 X ) + E

min

⇢
1,

P (z ! x)

P (x ! z)

��



Hard part: Analyzing the accept-reject step

Difference caused by 
accept-reject step at 

each point Easy!
Not easy!

!47

kTx � PxkTV  2P(z 62 X ) + E

min

⇢
1,

P (z ! x)

P (x ! z)

��



Hard part: Analyzing the accept-reject step

Difference caused by 
accept-reject step at 

each point Easy!

(z� x)>Vz(z� x) ⇡ (z� x)>Vx(z� x)

log detVz ⇡ log detVx

for random z ⇠ Px
Taylor Series  

+ 
 Gaussian polynomial 

tail bounds

Randomness in z 
+ 

Smoothness of 
weights

!48

kTx � PxkTV  2P(z 62 X ) + E

min

⇢
1,

P (z ! x)

P (x ! z)

��

Not easy!



Part I Summary:  
Sampling meets optimization

Optimization 
on Polytopes

Sampling 
on Polytopes

Log Barrier Method

[1967, 1990s]

Dikin Walk

[2012]

Volumetric Barrier 
Method

[1993]

Vaidya Walk

[2017]

John Ellipsoidal 
Algorithm


[1948, 2015]
John Walk


[2017]

faster fasterFast MCMC algorithms on polytopes

https://arxiv.org/abs/1710.08165!49



Future Directions

Improving 
dependency on 

d 
[Lee and Vempala 2016, 

2017]

 Non-uniform 
sampling 

[Rakhlin et al. 2015, 
Bubeck et al. 2015]

Sampling on 
sketched 
polytopes
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Part II: Log-Concave Sampling

⇡(x) / e�f(x) where f : Rd ! R is convex

Joint work with Yuansi Chen, Martin Wainwright and Bin Yu

!51



• Examples include Gaussian distributions, Laplace 
distributions, exponential and logistic distributions


• Frequentist set ups: form confidence intervals around the 
MLE


• Bayesian inference and inverse problems: MAP and 
credible interval estimation


• Large scale stochastic/Bayesian optimization

Part II: Log-Concave Sampling

⇡(x) / e�f(x) where f : Rd ! R is convex

Joint work with Yuansi Chen, Martin Wainwright and Bin Yu

!52



• Sampling: draw samples from the 
density


• Unadjusted Langevin algorithm 
(ULA):

• Optimization: find the global 
minimum (or a stationary point)


• Gradient descent: 
 

• Stochastic Gradient Algorithm:

From optimization to sampling

min
x2Rd

f(x)

xk+1 = xk � hrf(xk)

⇡(x) / e�f(x)

Xk+1 = Xk � hrf(Xk) +
p
2h⇠k+1

⇠k
i.i.d.⇠ N (0, Id⇥d)

[Parisi 1981, Grenander & Miller 1994, 
Roberts & Tweedie 1996]

Xk+1 = Xk � hrf(Xk) + h⇠k+1
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• Classical Langevin stochastic differential equation 
 

• Under mind regularity conditions: as            , distribution of 
converges to                      
 

• ULA updates: forward discretization of the Langevin SDE 
 
 
(no accept-reject step)

Langevin algorithms: Origins?

dXt = �rf(Xt)dt+
p
2dBt where Bt is standard Brownian motion

⇡(x) / e�f(x) where f : Rd ! R is convex
t ! 1 Xt

kP (Xt)� ⇡kTV
t"1�! 0

Xk+1 �Xk = �hrf(Xk) +
p
2h⇠k+1

!54



ULA performance:  
Large step size leads to large bias!

Trace-plot for one run
Histogram (multiple runs)  

upon convergence
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ULA performance:  
Small step mixes slowly!

Trace-plot for one run
Histogram (multiple runs)  

upon convergence

!56



ULA: Step-size and speed/bias tradeoff

0 100 200 300 400 500 600
Iteration

10°1

100

T
V
in

H
is
to
gr
am

ULA large

ULA opt

ULA small
L1 distance 

between 

 histograms

target accuracy

!57



How does one remove the asymptotic 
bias?

• Via the classical Metropolis-Hastings correction step


• Metropolis adjusted Langevin algorithm (MALA):


1. Use ULA updates as proposals 

2. Accept z with probability 
 

3. In case of rejection, stay at x

z = x� hrf(x) +
p
2h⇠

min

⇢
1,

e�f(z)

e�f(x)

P (z ! x)

P (x ! z)

�

!58



MALA: Fast convergence with no bias

L1 distance 
between 


 histograms

0 100 200 300 400 500 600
Iteration

10°1

100

T
V
in

H
is
to
gr
am

ULA large

ULA opt

ULA small

MALA
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Langevin algorithms: Traditional wisdom

• Rich body of work for Langevin algorithms


• ULA and MALA first suggested by Parisi in 1981 and 
formally introduced by Grenander & Miller in 1994


• Sufficient conditions for convergence first established by 
Roberts and Tweedie in 1996

!60



• Find conditions on    and a Lyapunov function V that contracts 
outside a ball  
 
 
sufficient to establish geometric ergodicity  
 
 
 

Langevin algorithms: Prior work

Type of results Existing Literature

Discretization & integration errors, 
Ergodicity, 

Asymptotic convergence

[Talay & Tubaro ‘90], 
[Meyn & Tweedie ‘95],  

[Roberts & Rosenthal ‘96, ‘01, ‘02]

E[V (X1)|X0 = x]  �V (x) + CIB(0,R)(x), � < 1

kP (xk|x0 = x)� ⇡kTV  V (x)R⇢k for some ⇢ < 1 and R > 0

⇡

For limited class of distributions,  
non-explicit rates,  

hard to track dependency on problem parameters
!61



Langevin algorithms: Related work

Type of results Existing Literature

Discretization & integration errors, 
Ergodicity, 

Asymptotic convergence

[Talay & Tubaro ‘90], 
[Meyn & Tweedie ‘95],  

[Roberts & Rosenthal ‘96, ‘01, ‘02]

Revived interest for non-
asymptotic results

[Bou-Rabee & Hairer ‘09],  
[Roberts & Rosenthal ‘14]

Explicit non-asymptotic bounds
[Dalalyan ‘15, ‘17],  

[Durmus & Moulines ‘15, ‘16],   
[Cheng & Bartlett ‘17]

Recent work uses coupling arguments for diffusions
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Algorithm ULA 
[Dalalyan 2016]

f  is L-smooth and 
m -strongly-convex

Mixing time bounds:  
Strongly log-concave

d

✓
L

m

◆2 1

�2

kP (xk)� ⇡kTV  �
⇡(x) / e�f(x)
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Algorithm ULA 
[Dalalyan 2016]

MALA 
[D., Chen, Wainwright, Yu 

2018]

f  is L-smooth and 
m -strongly-convex

Mixing time bounds:  
Strongly log-concave

d

✓
L

m

◆2 1

�2
d

✓
L

m

◆
log

1

�

kP (xk)� ⇡kTV  �
⇡(x) / e�f(x)

!64



Algorithm ULA 
[Dalalyan 2016]

MALA 
[D., Chen, Wainwright, Yu 

2018]

f  is L-smooth and 
m -strongly-convex

Mixing time bounds:  
Strongly log-concave

kP (xk)� ⇡kTV  �

Mixing time of MALA has 
• exponentially better dependence on accuracy 
• better dependence on conditioning L/m
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Algorithm ULA 
[Dalalyan 2016]

MALA 
[D., Chen, Wainwright, Yu 

2018]

f  is L-smooth and 
m -strongly-convex

f  is convex and  
L-smooth

d

✓
L

m

◆2 1

�2
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✓
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m

◆
log
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�

Mixing time bounds:  
Strongly and weakly log-concave
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Algorithm ULA 
[Dalalyan 2016]

MALA 
[D., Chen, Wainwright, Yu 

2018]

f  is L-smooth and 
m -strongly-convex

f  is convex and  
L-smooth

d

✓
L

m

◆2 1

�2
d

✓
L

m

◆
log

1

�

Mixing time bounds:  
Strongly and weakly log-concave

kP (xk)� ⇡kTV  �

d3L2 1

�4
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⇡(x) / e�f(x)

Faster!
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• Both algorithms have a good spectral gap in a high 
probability region

The difference between MALA and ULA: 
An informal proof
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• Both algorithms have a good spectral gap in a high 
probability region


• ULA has a biased stationary distribution 
 
 
 
 
 

kP (xk)� ⇡kTV  kP (xk)� ⇡ULAkTV + k⇡ULA � ⇡kTV

O(e�kh) O(
p

h)

Bias

The difference between MALA and ULA: 
An informal proof
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• Both algorithms have a good spectral gap in a high 
probability region


• ULA has a biased stationary distribution 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The difference between MALA and ULA: 
An informal proof
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• Both algorithms have a good spectral gap in a high 
probability region


• ULA has a biased stationary distribution 
 
 
 
 
 

• MALA is unbiased: larger step size implies faster mixing

kP (xk)� ⇡kTV  kP (xk)� ⇡ULAkTV + k⇡ULA � ⇡kTV

O(e�kh) O(
p

h) �/2  �/2

k � O

✓
1

h
log

1

�

◆
= O

✓
1

�2

◆

Bias

The difference between MALA and ULA: 
An informal proof

!72



Part II: Summary

Convex 
Optimization

Log-concave 
Sampling

Stochastic 
Gradient 
Algorithm

+ noise  
variance   h2

Gradient Descent Unadjusted 
Langevin Algorithm

Metropolis-Adjusted 
Langevin Algorithm

+ noise

 

variance h

+ Accept

 

Reject Step

Provides exponential 
gain in mixing time
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Future Directions

No gradient: 
Metropolis random walk 

O(d) slower! 
[D., Chen, Wainwright, Yu 2018]

With Hessian: 
Can we have a faster 

algorithm?

Framework for lower bounds 
on mixing times?

General/Mixture distributions: 
Non-log concave sampling 

(Simulated Tempering)

Higher order methods: 
Hamiltonian Monte Carlo 
Underdamped Langevin 

[Cheng et al. 2017, Smith et al. 2018]
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Summary: Connections

Optimization Sampling

Interior Point 
Methods

Randomized Interior 
Point Methods

Gradient Methods Langevin Algorithms
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Optimization Sampling

Faster Interior Point 
Methods

Faster Randomized 
Interior Point 

Methods

Gradient Methods Faster Langevin 
Algorithms

+ accept-reject  
 

step

Summary: Findings
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• Function specific mixing times: 
Estimating mean and covariance

So far…
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Algorithmic and statistical guarantees for learning 
mixture models from samples when number of 
mixtures is not known

SamplesDistributions

• Mixing times 

• Function specific mixing times: 
Estimating mean and covariance

Improving 
sample 
quality: 

From Monte 
Carlo to 
Quasi 

Monte Carlo

to reduce 

discrepancy

Will the model generalize or not?

Choice of kernel matters!

• Learning from data

Looking  
forward..

Data driven manifold learning: 
Low dimensional structure in 
deep networks
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