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Random Sampling

e We consider the problem of drawing random samples
from a given density (known up-to proportionality)

Xl,XQ,...,Xm ~ T



Sampling: A fundamental task

_ Monte Carlo
Integration Approximations

(9] = [ gyl ~ -3 g(X)

simulations
Xl,XQ,...,Xm ~ T

. _ Zeroth order
Optimization optimization

Escaping
saddle points

Bayesian
inference

min g(z) &——> sample from e 9(®)/7T
g | Simulated

annealing




Starting point: The reverse direction!
From optimization to sampling

Optimization

* Find the global minimum (or a e Sampling: draw samples from the
stationary point) density
/) () o e
e Gradient descent: e Unadjusted Langevin algorithm
(ULA):

Lk+1 — Tk — th(a:k)
Xpr1 = Xg — hVf(Xy) + V2hép s

e Stochastic Gradient Algorithm: ¢ iid. N0, L)
kK s Ldxd
X1 = X — WV f(Xk) + hék11 [Parisi 1981, Grenander & Miller 1994,
Roberts & Tweedie 1996]



Starting point: The reverse direction!
From optimization to sampling

Interior point Sampling from

method for linear polytopes
programming

* r*110)

[Dikin 1967, Nemivroski 1990] [Kannan and Narayanan 2012]



Motivation for current work:
Better understanding of sampling for
continuous spaces

e Metropolis Hastings Algorithms [1953, 1970] literature rich with
numerous algorithms

* Good understanding for sampling on discrete state space in literature

e Theoretical understanding for sampling from continuous spaces: an
active area of research

e Explicit theoretical guarantees gain us

* Provably correct benchmark for comparison, sometime further insight
into the pros and cons of the algorithm,

e Breadcrumbs for designing better algorithms

6



Today'’s talk:

Optimization

Optimization subject _ Sampling from
to linear constraints Polytopes

Convex Optimization — =— '—OQ‘COﬂPaVe
Sampling



Part I: Uniform Sampling on Polytopes

Joint work with Yuansi Chen, Martin Wainwright and Bin Yu

n linear constraints
d dimensions

n >d

X:{xERd Awgb}

A and b are known

’t‘i'.‘t"). g

n=4 n=6 n=12



Part I: Uniform Sampling on Polytopes

Joint work with Yuansi Chen, Martin Wainwright and Bin Yu

n linear constraints
d dimensions

n >d

X:{xERd Axgb}

e Applications in A and b are known

e Statistical physics: Hard disk simulations
e Sampling contingency tables

e Mixed integer convex programming



Uniform sampling: Existing methods

e Sampling on convex sets:

e Ball Walk [Lovasz and Simonovits 1990, 1992, 1993]
* Hit-and-run [Berbee et al. 1987, Bélisle et al. 1993, Lovasz
1999, Lovasz and Vempala 2003, 2004]
e Sampling on polytopes:

* Dikin Walk [Kannan and Narayanan 2012, Narayanan 2015,
Sachdeva and Vishnoi 2016]

* Geodesic Walk [Lee and Vempala 2016], Riemannian Hamiltonian
Monte Carlo [Lee and Vempala 2017]
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Ball Walk [Lovasz and Simonovits 1990]

e Propose a uniform point in a ball around x
* Reject if outside the polytope, else move to it

* |n case of rejection, define next state as x

z ~ Unit

11




Ball walk mixes slowly for sharp sets

e Many rejections near sharp corners
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Ball walk mixes slowly for sharp sets

e Mixing time depends on conditioning of the set

|P(zg) = 7l[Tv <0
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d* R
]y “ * Number of steps £ > O ( : O;t>
0% R;
11

* Per step cost = O (nd)
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Ball walk mixes slowly for sharp sets

e Mixing time depends on conditioning of the set

|P(zg) = 7l[Tv <0

-
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}V “ ¢ Number of steps £ > O ( : 02“t>
0° R:
111

* Per step cost = O (nd)

Conditioning ratio:

.
~
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Unknown
Can be exponential in d
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Improving Ball Walk: Adaptive ellipsoids?
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Dikin Walk [Kannan and Narayanan 2012]

e Based on log barrier for polytope used in interior point
methods [Dikin 1967, Nemirovski 1990]
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Dikin Walk [Kannan and Narayanan 2012]

1
e Propose z~ N <a’;, —D;1>

17

d

e The inverse covariance defined

by the Hessian of the log barrier




Dikin Walk [Kannan and Narayanan 2012]

1
e Propose z ~ N (CB, ED;1>
e Reject z if it is outside the

set

e Otherwise, accept z with
probability

P(accept z) = min {17 P(z — ) }

P(x — 2)

e |n case of rejection, define
next state as x

18



Upper bounds on mixing times

|P(xg) — m||Tv <0

Ball Walk Dikin Walk

n = #Flinear constraints
02 R? nd log 5 d = #dimensions
n >d

#steps (k)

0 = accuracy

2
cost/step nd nd %“t — conditioning

19




Upper bounds on mixing times

|P(xg) — m||Tv <0

Ball Walk Dikin Walk

#steps (k)

What if n > d?

2
cost/step nd nd

20




A closer look at Dikin walk:
Proposals shrink with # constraints

Square, 4 constraints Square, overparameterized

[Similar argument holds even when the set is not overparameterized.]
21



How to improve the Dikin walk?:
Even better ellipsoids?

Put weights on constraints

Hessians of weighted barriers in optimization

22




Our work:
Exploiting improved barriers for sampling

[Kannan and Narayanan 2012] [Chen, D., Wainwright and Yu 2017]

Dikin Proposal Vaidya Proposal
2~ N | x lD_l z~N (Qf LVl>
? d X ) m €T
n T - d a;a;
aiq; Ve X (UQ; i T —> L
D:r; X Z (b — CLTCE)Z z—zl ’ n (bz — aing)2
i=1 V" z -
a; D ta;
Ogx,i —

(b; —a x)2
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Our work:
Exploiting improved barriers for sampling

[Kannan and Narayanan 2012] [Chen, D., Wainwright and Yu 2017]

Dikin Proposal Vaidya Proposal
N lD_l ZNN(:U L V1>
< Zlf,d « 7\/@ T
n T - d a;a;
a0, S S ) P
D:r; X x x,1 T .N\2
2 - al o "))
a; D 1a;
O, —
© (b —a) 2)

Inspiration from Optimization:

Log Barrier Method Volumetric Barrier Method
[Dikin 1967, Nemirovski 1990] [Vaidya 1993]
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Our work:

Exploiting improved barriers for sampling

[Kannan and Narayanan 2012]

Dikin Proposal

1
~ —p:i
2 N(az,d . )

Unit weight, sums to n

[Chen, D., Wainwright and Yu 2017]

Vaidya Proposal

z~ N (a:, Lyx1>

v nd
- d a;a,;
V:L' X T, + — -
; <O | n> (bi — a; x)?
a; D 1a;
Ox.i —
"~ (b —aj )’

T

[0, 1] valued, sums to d
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Vaidya vs Dikin proposals

Square, 4 constraints Square, overparameterized
Dikin Dikin
Vaidya /\ Vaidya

v @ :
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Upper bounds:
Vaidya walk mixes in fewer steps!

HP L —7T||TV < 5

Ball Walk m

d2 R2 1 1 n constraints
max nd log = nO2dt-o log = d dimensions
62 RZ.. 0 0 n>d
similar
Per Step nd n d2 n d2 cost/step as
Cost Dikin walk
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Upper bounds:
Vaidya walk mixes in fewer steps!

! =

Ball Walk m

d? R? 1 1 n constraints
52 Rglax ndlog — nd-0dl-? log — d dimensions

min 5 5 n>d

What if n > d7?

similar

nd nd2 nd2 cost/step as
Dikin walk

Per Step
Cost
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Simulation: Dikin Walk vs Vaidya Walk

#dimensions = 2 K = #iterations #experiments = 200
nitial target
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Small #constraints: No Winner!

#constraints = 4
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What if n > d? Vaidya walk wins!

K = #iterations

k=100

#constraints = 2048

k=10

#
Walk . 3
. -

k=500

. .% g
%o [
3 go

“‘...‘h'-

o S %o

% $ .0
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Scaling with #constraints

%k Dikin
- B—W Vaidya

10°
Approx. |
Mixing Time 102
10! 10?2 10
n

#constraints (n)



Can we improve further?

[Kannan and ~ [Chen, D.,
Narayanan 2012] Wainwright, Yu 2017]

Dikin Proposal Vaidya Proposal
2~ N xlD_l z~/\f<zc L Vl)

Y d X Y \/@ T
i T - d a;a;
a;a, 1

D, x L Ve (Ux,i + >

; (bi — a] 1) ; n) (b; —a, )
a; D ta;
Ox,i —
SR e

Inspiration from Optimization:

Log Barrier Method Volumetric Barrier
[Dikin 1967, Nemirovski Method
1990] [Vaidya 1993]




Yes..via the John Walk!

LEMGERERT [Chen, D., [Chen, D.,
Narayanan 2012] Wainwright, Yu 2017] Wainwright, Yu 2017]

Dikin Proposal Vaidya Proposal John Proposal
>~ N €T lD_l z~N (ZC —1 V1> N
qx ' Vnd " 2 N AT ﬁj
T CLZ'G,T T
V T, o -
D OCZ b_a;l_aj OCZ(O- >(b—aTat)2 jxoczjwzb_a—r )2
;er a; . Z
Og,i — , —
Ty —al2)? Jzi = COIVEX program

Inspiration from Optimization:

Log Barrier Method Volumetric Barrier John’s EII_ipsoidaI
[Dikin 1967, Nemirovski Method Algorithm

1990] [Vai dya 1993] [John 1948,2I(_)<:Z]and Sidford




John walk is “faster” for large #constraints (n)

|P(xg) — m||Tv <0

Vaidya Walk | John Walk

n = #constraints

d = #dimensions

Per Step n>d
Cost
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John walk is “faster” for large #constraints (n)

|P(z) —m|lTv < 6

Vaidya Walk | John Walk

Per Step
Cost




John walk is “faster” for large #constraints (n)

|P(z) —m|lTv < 6

Vaidya Walk

1 1
nd log 5 nY°2d!° log 5 d% log* g log 5

What if n > d?

Per Step 2 2

nd? log? n
Cost S
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Conjecture: Faster mixing for John walk

|P(z) —m|lTv < 6

Vaidya Walk | John Walk

1 1
nd log % nY°2d!° log 5 d? log® % log 5
Per Step ndQ nd2 nd2 10g2 n

Cost
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Proof Outline

Transition distributions

Tz

39




Proof Outline

Transition distributions

Tz
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Proof Outline

Transition distributions

Tz

Isoperimetry
+
Conductance bounds for
spectral gap

\{

spectral gap > 1

41
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Proof Outline

Transition distributions

Tz

Isoperimetry
+
Conductance bounds for
spectral gap

\{

pQAQ

spectral gap > 1

v

|P(xr) — 7||rv <0 for k> O

42

A2 2

<log(1/5)
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Proof Outline

Transition distributions

Tz

[Tz — Tyllrv < % whenever d(

|Te — Tyllrv < || T — Pallrv -
+ || Pz — Py

43

r,y) <A
B ”7; _PyHTV
TV




Proof Outline

Transition distributions

Tz

Difference in proposal and
transition distribution due to
accept-reject step

/. N\
[Tz — Tylltv < || Te — Pzlltv + | Ty — PyllTv

+ HPCC - Py| TV « Difference in proposal
distributions at two points

44




Easy part: Analyzing difference In
the proposal distributions

C

Vaf)
v nd
.

P, =N (.CIZ‘,

= En: ooy + ) G
v ) (b; — a,LTac)2
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Hard part: Analyzing the accept-reject step

Difference caused by

accept-reject step at
each point

||7; — PxHTV < QIP)(Z Q X) + K |min < 1,
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Hard part: Analyzing the accept-reject step

Difference caused by
accept-reject step at

each point

||7;; — PxHTV < QIP)(Z Q .)C') + K |min < 1,
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Hard part: Analyzing the accept-reject step

Difference caused by
accept-reject step at

each point

1T — Pallrv < 2P(2 € X) + E |min «

Randomness in z
+
Smoothness of
weights

Taylor Series
; for random z ~ P,

Gaussian polynomial
tail bounds

48




Part | Summary:
Sampling meets optimization

Optimization Sampling
on Polytopes on Polytopes

faSter Fast MCMC algorithms on polytopes faSter

https://arxiv.org/dbs/1710.08165




Future Directions

Improving
dependency on

d

[Lee and Vempala 2016,
2017]

Non-uniform
sampling

Sampling on
sketched
polytopes

[Rakhlin et al. 2015,
Bubeck et al. 2015]

50



Part Il: Log-Concave Sampling

Joint work with Yuansi Chen, Martin Wainwright and Bin Yu

m(z) x e 7@ where f: R - R is convex
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Part Il: Log-Concave Sampling

Joint work with Yuansi Chen, Martin Wainwright and Bin Yu

m(z) x e 7@ where f: R - R is convex

e Examples include Gaussian distributions, Laplace
distributions, exponential and logistic distributions

* Frequentist set ups: form confidence intervals around the
MLE

 Bayesian inference and inverse problems: MAP and
credible interval estimation

e Large scale stochastic/Bayesian optimization

52



From optimization to sampling

e Optimization: find the global
minimum (or a stationary point)

min f(x)

rcR4

e Gradient descent:

Lk+1 — LTk — th(:ck)

e Stochastic Gradient Algorithm:
X1 = Xg — hVf(Xk) + hékaq

53

e Sampling: draw samples from the
density

m(x) o e~ /()

 Unadjusted Langevin algorithm
(ULA):

X1 = X — WV f(Xg) + V2h& 41
e R N(0, Igxa)

[Parisi 1981, Grenander & Miller 1994,
Roberts & Tweedie 19906]



Langevin algorithms: Origins?

e (Classical Langevin stochastic differential equation

dX; = =V f(X)dt + \/idBt where B; is standard Brownian motion

* Under mind regularity conditions: as ¢t — oo, distribution of X,
converges to m(z) o e /(®)

tToo
|P(Xy) — 7|y 25 0

e ULA updates: forward discretization of the Langevin SDE

X1 — Xgp = =WV f(Xk) + V2hEk 11
(no accept-reject step)

54



ULA performance:
Large step size leads to large bias!

Histogram (multiple runs)
upon convergence Trace-plot for one run

— TrUR dencity
R Unadjusted (‘arge step)

) 015
m o
> s
o~ o
o >
£ 0 "" -
-
oy
-
» US
1544 ' ’
2S5 00 2. 50 75 WO 125 J S0 100 150
S t-l'll’:' iteration
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ULA performance:
Small step mixes slowly!

Histogram (multiple runs)

upon convergence Trace-plot for one run

w— e ety
R Unagiusted (smalb step)

X value

Densily v

L :‘Ix’

Keratian
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ULA: Step-size and speed/bias tradeoff

10V -
| o, ULA large
o
*N‘~*~‘ —&— ULA Opt
T, ~-a-- ULA small
L1 distance
between
histograms
10~
target accuracy

0 100 200 300 400 500 600
[teration
57



How does one remove the asymptotic
bias?

e Via the classical Metropolis-Hastings correction step
 Metropolis adjusted Langevin algorithm (MALA):

1. Use ULA updates as proposals

2z =1 —hVf(z)+ V2he

2. Accept z with probability

I e~ 12 P(z = z)
Le—f@) Pz — 2)

3. In case of rejection, stay at x

58



MALA: Fast convergence with no bias

10V -
| N ULA large
i ““"‘u.,‘ —=&— ULA opt
i T o
i a-- ULA small
L1 distance : Aoy —% - MALA
between i “\s-*._\‘_*‘
histograms !
|
i
1071
|
!
|
i

Ut s AR

0 100 200 300 400 500 600
[teration
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Langevin algorithms: Traditional wisdom

e Rich body of work for Langevin algorithms

e ULA and MALA first suggested by Parisi in 1981 and
formally introduced by Grenander & Miller in 1994

e Sufficient conditions for convergence first established by
Roberts and Tweedie in 1996
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Langevin algorithms: Prior work

Type of results Existing Literature

Discretization & integration errors, [Talay & Tubaro ‘90|,
Ergodicity, [Meyn & Tweedie ‘95],
Asymptotic convergence [Roberts & Rosenthal ‘96, ‘01, ‘02]

* Find conditions on mand a Lyapunov function V that contracts
outside a ball

ElV(X1)|Xo = 2| < AV(z) + Clpo,r)(z), A <1

sufficient to establish geometric ergodicity

|P(zi|zo = 2) — 7l|rv < V(2)Rp® for some p < 1 and R > 0

For limited class of distributions,

non-explicit rates,
hard to track dependency on problem parameters




Langevin algorithms: Related work

Type of results Existing Literature

Discretization & integration errors, [Talay & Tubaro ‘90|,
Ergodicity, [Meyn & Tweedie ‘95],
Asymptotic convergence [Roberts & Rosenthal ‘96, ‘01, ‘02]

Revived interest for non- [Bou-Rabee & Hairer ‘09],
asymptotic results [Roberts & Rosenthal ‘14]

[Dalalyan ‘15, ‘17],
Explicit non-asymptotic bounds [Durmus & Moulines ‘15, ‘16],
[Cheng & Bartlett ‘17]

Recent work uses coupling arguments for diffusions
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Mixing time bounds:
Strongly log-concave

m(z) x e (@)

|P(zg) — mllrv < 0

ULA

Algorlthm [Dalalyan 2016]

{f is L-smooth and

mv-strongly-convex




Mixing time bounds:
Strongly log-concave

m(z) x e (@)

|P(zg) — mllrv < 0

ULA MALA

[D., Chen, Wainwright, Yu
[Dalalyan 2016] 2018]

Algorithm

{f is L-smooth and

mv-strongly-convex




Mixing time bounds:
Strongly log-concave

m(z) x e (@)

|P(zg) — mllrv < 0

ULA MALA

Algorithm [D., Chen, Wainwright, Yu

[Dalalyan 2016] 2018]

f is L-smooth and ’ d £ log 1
mv-strongly-convex 52 m 0

Mixing time of MALA has
e exponentially better dependence on accuracy 0
e Dpetter dependence on conditioning L/m
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Mixing time bounds:
Strongly and weakly log-concave

m(z) x e (@)

|P(zg) — mllrv < 0

ULA MALA

Algorithm (Dalalyan 2016) [D., Chen, Wainwright, Yu

{f is L-smooth and

mv-strongly-convex

{ is convex and
[-smooth




Mixing time bounds:
Strongly and weakly log-concave

m(z) x e (@)

|P(zg) — mllrv < 0

ULA MALA

Algorithm (Dalalyan 2016) [D., Chen, Wainwright, Yu

{f is L-smooth and

mv-strongly-convex

{ is convex and
[-smooth




The difference between MALA and ULA:
An informal proof

* Both algorithms have a good spectral gap in a high
probability region

68



The difference between MALA and ULA:
An informal proof

* Both algorithms have a good spectral gap in a high
probability region

* ULA has a biased stationary distribution

|P(zr) — 7||ltv < ||P(2k) — muLallTv + [|[Tuna — 7TV
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The difference between MALA and ULA:
An informal proof

* Both algorithms have a good spectral gap in a high
probability region

* ULA has a biased stationary distribution

|P(zr) — 7||ltv < ||P(2k) — murallTv + [|[Tuna — 7TV

O(e™ ") O(V'h)

70



The difference between MALA and ULA:
An informal proof

* Both algorithms have a good spectral gap in a high
probability region

* ULA has a biased stationary distribution

|P(zy) — 7||lrv < ||P(2k) — munallTv + ||Tuna — 7TV
O(e ™) <d5/2  OKR) <6§/2

» kZO(%Iog%) :0(%2)

/1



The difference between MALA and ULA:
An informal proof

* Both algorithms have a good spectral gap in a high
probability region

* ULA has a biased stationary distribution

|P(zy) — 7||lrv < ||P(2k) — munallTv + ||Tuna — 7TV
O(e ™) <d5/2  OKR) <6§/2

1 1 1
e MALA is unbiased: larger step size implies faster mixing

(2



Part Il: Summary

Convex Log-concave

Optimization Sampling

+ noise + Accept

Unadjusted

. L in Algorith .
variance h ahgevin Algorithm Reject Step

Metropolis-Adjusted
Langevin Algorithm

Gradient Descent

Provides exponential

gain in mixing time

+ noise Stochastic

variance h*

Gradient
Algorithm

/3



Future Directions

No gradient:
Metropolis random walk
O(d) slower!

[D., Chen, Wainwright, Yu 2018]

With Hessian:
Can we have a faster
algorithm?

Higher order methods:
Hamiltonian Monte Carlo
Underdamped Langevin

[Cheng et al. 2017, Smith et al. 2018]

General/Mixture distributions:
Non-log concave sampling
(Simulated Tempering)

Framework for lower bounds
on mixing times?
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Summary: Connections

Optimization q

Interior Point —) Randomized Interior
Methods Point Methods

Gradient Methods ==l | angevin Algorithms

l6S



Summary: Findings

Optimization q

Faster Randomized

Faster Interior Point | |
Methods _» Interior Point
Methods

+ accept-reject  Faster Langevin

Gradient Methods Algorithms

step

/0



So far...

Distributions

e Mixing times

* Function specific mixing times:
Estimating mean and covariance
’r



Looking
forward..

* |Learning from data

Distributions

e Mixing times

* Function specific mixing times:
Estimating mean and covariance
/8



- Algorithmic and statistical guarantees for learning
LOOkIng mixture models from samples when number of

forward mixtures is not known

* |Learning from data

e Mixing times

* Function specific mixing times:
Estimating mean and covariance
79



- Algorithmic and statistical guarantees for learning
LOOkIng mixture models from samples when number of

forward mixtures is not known

Data driven manifold learning:

L ow dimensional structure in \

deep networks * Learning from data

e Mixing times

* Function specific mixing times:
Estimating mean and covariance
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- Algorithmic and statistical guarantees for learning
LOOkIng mixture models from samples when number of

forward mixtures is not known

Data driven manifold learning:

L ow dimensional structure in \

deep networks * Learning from data

/

Will the model generalize or not?
Choice of kernel matters!

e Mixing times

* Function specific mixing times:
Estimating mean and covariance
81



- Algorithmic and statistical guarantees for learning
LOOkIng mixture models from samples when number of

forward mixtures is not known

Data driven manifold learning:

L ow dimensional structure in \

deep networks * Learning from data

/

Will the model generalize or not?
Choice of kernel matters!

Improving
sample
quality:

Distributions

From Monte
Carlo to
Quasi
Monte Carlo
to reduce
discrepancy

e Mixing times

* Function specific mixing times:
Estimating mean and covariance
82
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