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Objective

Goal: Understand parameter estimation for mixture models when
the number of mixtures is not correctly-specified
Model set-up:

True Model: Pθ∗ =
k∗∑

i=1

πiN (θ∗i , σ2)

Fitted Model: Pθ =
k∑

i=1

πiN (θi, σ2)

Algorithm: Run Expectation-Maximization (EM) to estimate
the parameters of model Pθ given n i.i.d. samples from Pθ∗

EM on Gaussian mixture models
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Under-specified mixtures: Simple settings

Case 1: Three-Gaussian mixture with two close components

Pθ∗ = 1
2
N (−θ∗, 1) + 1

4
N (θ∗(1 + ρ), 1) + 1

4
N (θ∗(1− ρ), 1)

Case 2: Three-Gaussian mixture with one small component

Pθ∗ = 1− ω
2
N (−θ∗, 1) + 1− ω

2
N (θ∗, 1) + ωN (0, 1).

where ω and ρ are small positive scalars.

The model fit: Using EM, fit a two Gaussian mixture

Pθ = 1
2
N (−θ, 1) + 1

2
N (θ, 1).
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Quantities of interest:
1 Algorithmic rate of convergence of EM
2 Final statistical error |θ̂n − θ∗| where θ̂n is the final EM
estimate

|θ̂n − θ∗|︸ ︷︷ ︸
Estimation error

≤ |θ̂n − θ|︸ ︷︷ ︸
Statistical error

+ |θ∗ − θ|︸ ︷︷ ︸
Bias

Theoretical Results

1 How fast do the EM iterates converge to θ̂n?
—Exponentially fast, log n steps at most!

2 What is the scaling of the error
∣∣θ̂n − θ

∣∣ with sample size n?
—The usual n−1/2 scaling!

3 How large is the bias term |θ∗ − θ|?
—O

(
ρ1/4) for case 1, and O

(
ω1/8) for case 2.

(Upper bounds)

Numerical Experiments
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Figure 1: Illustration of our main results. While the statistical error of order
n−1/2 (panel (a)) matches our theoretical predictions, in panels (b) and (c), we
observe that the biases for cases 1 and 2 have a scaling of O

(
ρ2) and O

(
ω
)

which suggest the potential looseness of our theoretical bounds for the biases.
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