Theoretical guarantees for EM under misspecified Gaussian mixture models

VTFOLEON

Raaz Dwivedi*, Nhat Ho*, Koulik Khamaru*, Martin Wainwright and Michael Jordan
\{raaz.rsk, minhnhat, koulik, wainwrig\}@berkeley.edu, jordan@cs.berkeley.edu
University of California, Berkeley
Department of Statistics

Objective

Goal: Understand parameter estimation for mixture models when the number of mixtures is not correctly-specified Model set-up:

$$
\begin{aligned}
& \text { True Model: } \quad \mathbb{P}_{\theta^{*}}=\sum_{i=1}^{\mathrm{k}^{*}} \pi_{i} \mathcal{N}\left(\theta_{i}^{*}, \sigma^{2}\right) \\
& \text { Fitted Model: } \quad \mathbb{P}_{\theta}=\sum_{i=1}^{\mathrm{k}} \pi_{i} \mathcal{N}\left(\theta_{i}, \sigma^{2}\right)
\end{aligned}
$$

Algorithm: Run Expectation-Maximization (EM) to estimate the parameters of model \mathbb{P}_{θ} given n i.i.d. samples from $\mathbb{P}_{\theta^{*}}$

EM on Gaussian mixture models

Under-specified mixtures: Simple settings
Case 1: Three-Gaussian mixture with two close components $\mathbb{P}_{\theta^{*}}=\frac{1}{2} \mathcal{N}\left(-\theta^{*}, 1\right)+\frac{1}{4} \mathcal{N}\left(\theta^{*}(1+\rho), 1\right)+\frac{1}{4} \mathcal{N}\left(\theta^{*}(1-\rho), 1\right)$ Case 2: Three-Gaussian mixture with one small component

$$
\mathbb{P}_{\theta^{*}}=\frac{1-\omega}{2} \mathcal{N}\left(-\theta^{*}, 1\right)+\frac{1-\omega}{2} \mathcal{N}\left(\theta^{*}, 1\right)+\omega \mathcal{N}(0,1) .
$$

where ω and ρ are small positive scalars.
The model fit: Using EM, fit a two Gaussian mixture

$$
\mathbb{P}_{\theta}=\frac{1}{2} \mathcal{N}(-\theta, 1)+\frac{1}{2} \mathcal{N}(\theta, 1) .
$$

(a)
(b)

(c)

(d)

Quantities of interest:

- Algorithmic rate of convergence of EM
(2Final statistical error $\left|\widehat{\theta}_{n}-\theta^{*}\right|$ where $\widehat{\theta}_{n}$ is the final EM estimate

$$
\underbrace{\left|\widehat{\theta}_{n}-\theta^{*}\right|}_{\text {Estimation error }} \leq \underbrace{\left|\hat{\theta}_{n}-\bar{\theta}\right|}_{\text {Statistical error }}+\underbrace{\left|\theta^{*}-\bar{\theta}\right|}_{\text {Bias }}
$$

Theoretical Results

- How fast do the EM iterates converge to $\widehat{\theta}_{n}$? Exponentially fast, $\log n$ steps at most!
(2 What is the scaling of the error $\left|\widehat{\theta}_{n}-\bar{\theta}\right|$ with sample size n ? The usual $n^{-1 / 2}$ scaling!
© How large is the bias term $\left|\theta^{*}-\bar{\theta}\right|$?
$\mathcal{O}\left(\rho^{1 / 4}\right)$ for case 1, and $\mathcal{O}\left(\omega^{1 / 8}\right)$ for case 2. (Upper bounds)

Numerical Experiments

References

[1] S. Balakrishnan, M. J. Wainwright and B. Yu, Statistical Guarantees for the EM
Algorithm: From Population to Sample-based Analusis AoS Algorithm: From Population to Sample-based Analysis, AoS (2017).
[2] R. Dwivedi*, N. Ho ${ }^{*}$, K. Khamarru*, M. J. Wainwright and M. I. Jordan, Theoretical guarantees for EM under misspecified Gaussian mixture models, NIPS 2018. [3] R. Dwivedi*, N. Ho*, K. Khamaru*, M. J. Wainwright, M. I. Jordan and Bin Yu,
Singularity, misspecification and the convergence rate of EM, arXiv:1810.00828

