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U-shaped bias-variance tradeoff: 
Low-dimensional settings with 
“good” estimators

Classical Wisdom: Occam’s razor 
Use the simplest model that fits the data
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…, Skurichina-Duin 98,00, Belkin-Hsu-Ma-Mandal 18, 
Muthukumar-Vodrahalli-Sahai 19, Hastie-Montanari-Rosset-

Tibshirani 19, … 

“Complexity” of ℋ

Modern Phenomenon: Fit without fear! 
Use the largest model that achieves zero training error

Non-U shaped risk curves in 
modern overparameterized models



Is double descent a conundrum for the classical wisdom?
We expect the classical U-shaped tradeoff given a fixed dataset, and as the 
“complexity” of the fitted estimator varies in a good estimator class
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Is double descent a conundrum for the classical wisdom?

Is parameter counting a valid complexity measure, 
especially for ?d ≫ n

We expect the classical U-shaped tradeoff given a fixed dataset, and as the 
“complexity” of the fitted estimator varies in a good estimator class


Need to pay attention to


• the estimator class, as well as

• the complexity measure

 = number of features

 = number of samples

d
n



Complexity: A tricky concept

A fundamental notion: Kolmogorov’s algorithmic complexity


Complexity in Statistics and ML: Useful for model selection


• Test error ~ Train error + Complexity / 


• x-axis in bias-variance—often vaguely defined; parameter count often used

na

 = number of samplesn



Parameter counting as complexity
Origins for linear regression: y = Xθ⋆ + ε

• Akaike Information Criterion (AIC): 


• Bayesian information criterion (BIC): 


• Rademacher complexity:  


• Degrees of freedom: 


• Vapnik-Chervonenkis dimension: 


• Minimum description length complexity:  (asymptotically)

d/2
d
2

log n

𝔼[ sup
θ∈Θ ∑ εix⊤

i θ] ∼ d

trace(X⊤X) ∼ d

d
d
2

log n

OLS achieves the minimax error of 

order  in low-dimensions 
d
n

d ≪ n
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but in high-dimensions these complexity 
measure neither work nor theoretically well-

justified

this talk:

a data-dependent complexity using minimum 

description length that is not just parameter count



Minimum Description Length (MDL)
“Choose the model that gives the shortest description of data”

• Developed by Rissanen with roots in Kolmogorov’s algorithmic complexity, 
also seen as a computable variant based on Shannon’s information theory


• Probability models interpreted as codes:  

A probability model  on    Encoding observation  with  bits 

                                 Good fit  Shorter codelength (description)


• Over the years: Two-stage MDL, mixture MDL, normalized maximum likelihood

Q 𝒴 ⟷ y log(
1

Q(y)
)

⟷

Rissanen 76, 80, Barron-Rissanen-Yu 98, Hansen-Yu 02, Grunwald 07



One objective can be generalized


• Worst-case redundancy w.r.t. a postulated 
class of codes  

    


 
Optimal code: Normalized maximum likelihood (NML) 
 

            

{pθ, θ ∈ Θ}

min
q

max
y [log ( 1

q(y) )− min
θ

log ( 1
pθ(y) )]

qNML(y) =
maxθ pθ(y)

∫ maxθ′￼
pθ′￼

(z)dz

Optimal codes from an MDL perspective

Two possible objectives


• Minimum expected redundancy 
       




• Minimum worst-case redundancy 
 




Optimal code 

min
q

𝔼y∼p⋆ [log ( 1
q(y) ) − log ( 1

p⋆(y) )]

min
q

max
y [log ( 1

q(y) ) − log ( 1
p⋆(y) )]

q = p⋆

With correctly specified generative model With unspecified generative model

Rissanen 76, 80, Shtarkov 1981, Barron-Rissanen-Yu 98



NML Complexity =∫ max
θ

pθ(y)dy

                                         = Worst-case redundancy


                                         = Expected redundancy under known 


                                          with -dimensional parametric codes ( )


• However when , the  code is not defined.


• E.g., even for the linear model  with Gaussian noise & linear codes: 
 
 when           .

P⋆

∼
d
2

log n d d ≪ n

∫ max
θ

pθ(y)dy = ∞ qNML

y = Xθ⋆ + ε

y ∈ ℝn ⟹ ∫ max
θ

pθ(y)dy ∝ ∫ exp( −
1

2σ2
∥X ̂θ OLS − y∥2)dy = ∞

noise  varianceσ2 = (ε)



This talk: Tackling the infinity problem of NML

• Prior fixes: Truncate the output space [Barron-Rissanen-Yu 98] 


• This talk: Regularization + Modified NML complexity


• In particular, using ridge regularization as that allows to obtain best 
prediction performance across range of models and also enable analytical 
calculations



Ridge luckiness normalized maximum likelihood
Weight the codes with a luckiness function on parameter space

• LNML principle:    for some ``luckiness function” 


• Our approach: Choose luckiness factors  induced by ridge regularization


• For linear models, each  leads to a modified LNML code : 

                        

 
                 with    

max
θ

pθ(y) ↔ max
θ

pθ(y)wθ wθ

wθ,Λ

wθ,Λ qΛ

qΛ(y) ∝ exp (−
1

2σ2
∥X ̂θ Λ − y∥2 −

1
2σ2

̂θ ⊤
ΛΛ ̂θ Λ)

̂θ Λ = min
θ

∥Xθ − y∥2 + θ⊤Λθ = (X⊤X + Λ)−1X⊤y

noise varianceσ2 =



Defining the MDL-Complexity
Via the optimal LNML code in a rich ridge class

• To derive complexity: Optimize over —- =: 


• Choose a rich class of :  with  = eigenvectors( )


• Account codelength for  (not present in usual NML): 
 
                      for small enough (discretization) 


• Define the MDL-complexity as 

      where  achieves 

Λ min
Λ

𝔼y∼p⋆ [log ( 1
qΛ(y) ) − log ( 1

p⋆(y) )] Ropt

Λ {UDU⊤, D ⪰ 0} U X⊤X

Λ

ℒ(Λ) = ∑ log(λi/Δ) Δ

MDL − COMP =
1
n

(Ropt + ℒ(Λopt)) Λopt Ropt



Main result: Analytical MDL-COMP for linear models
Not just parameter count, instead a function of covariate design & its interaction with signal

If , and , , then 
                        

y ∼ 𝒩(Xθ⋆, σ2In) X⊤X = Udiag(ρ1, …, ρd)U⊤ wi = U⊤θ⋆

Ropt =
1
n

min{n,d}

∑
i=1

log (1 +
ρiw2

i

σ2 )
MDL − COMP =

1
n

min{n,d}

∑
i=1

log (ρi +
σ2

w2
i ) + min {1,

d
n } log ( 1

Δ )



MDL-COMP

n = 200, σ2 = 0.1, X ∼ 𝒩(0,diag(1,2−α, …, d−α))

~ 
d
n

~ log d

Unpacking the result for Gaussian X
Slow logarithmic growth in overparameterized regime ( )d ≫ n

 = true dimensionality 
 = eigenvalue decay rate
d⋆

α



Other favorable properties about MDL-COMP

The optimal regularization parameter defining linear MDL-COMP also achieves


• optimal regularization for the in-sample risk  


• best worst-case redundancy over a family of noise distributions 
      with 


 
Also, MDL-COMP can be easily extended to kernel methods, where it informs 
minimax in-sample risk

min
Λ

𝔼[∑n
i=1 (x⊤

i
̂θ Λ − x⊤

i θ⋆)2]

min
Λ

max
P∈𝒫

𝔼y∼P log( 1
qΛ(y) ) 𝒫 = {P |EP(y |X) = Xθ⋆, Var(y |X) ⪯ σ2In}



Consequences for double descent
Perhaps the issue lies in the estimator

• Since MDL-COMP is monotone in , using it as the complexity does not 
change the qualitative nature of the test MSE curves for OLS or ridge 


• Double descent likely due to the choice of the estimator, e.g., min-norm OLS


• Conclusion not contradictory with literature on benign overfitting, which provide 
sufficient conditions for interpolation to generalize well for  (often 
estimator and dataset vary together with ) 
 
… Belkin-Hsu-Ma-Mandal 18, Muthukumar-Vodrahalli-Sahai 19, Hastie-Montanari-Rosset-Tibshirani 19, 
Tsigler-Bartlett 20, Wu-Xu 20, Nakkiran-Venkat-Kakade-Ma 20 …

d

d ≫ n
d/n



Can MDL-COMP be useful for practice?



Let’s make it computable from data




where  
 
               and   denote the eigenvalues of 

Prac-MDL-COMP = min
λ

log ( 1
qλ(y) )

= min
λ [ ∥X ̂θ λ − y∥2

2σ2
+

λ∥ ̂θ λ∥2

2σ2
+

min{n,d}

∑
i=1

log (1 +
ρi

λ )]
̂θ λ = (X⊤X + λI)−1X⊤y ρi X⊤X

Suggested by our theorems + also consistent with 
recent suggestions by Grunwald and Roos ‘20



Model selection with Prac-MDL-COMP
Test MSE minimizer close to the minimizer of Prac-MDL-COMP objective

Vary regularization



Model selection with Prac-MDL-COMP



Prac-MDL-COMP removes the double descent
Test performance competitive compared to cross-validation



Using Prac-MDL-COMP for hyperparameter tuning

min
λ [ ∥X ̂θ λ − y∥2

2σ2
+

λ∥ ̂θ λ∥2

2σ2
+

min{n,d}

∑
i=1

log (1 +
ρi

λ )]
K-fold computational savings compared to K-fold cross validation (CV)



Experiments on PMLB datasets

PMLB: a large benchmark suite for machine learning evaluation and comparison

Olson-Cava-Orzechowski-Urbanowicz-Moore 17


Diverse set of tabular datasets


Predicting breast cancer from image features


Predicting automobile prices


Election results from previous elections

d

n



Experiments on PMLB datasets
MDL-COMP better for hyper-parameter tuning in low-data settings



fMRI experimental setup

Video clip Extract gabor 
features

Predictive 
model

fMRI voxel 
responses

Nishimoto-Vu-Naselaris-Benjamini-Yu-Gallant 11
 = 1280


 = 7200

= 540

d
n_train

n_test



Experiments on fMRI data from 100 voxels
MDL-COMP better than Bayesian-ARD regression, and pretty comparable to CV tuning



Experiments on neural tangent kernels

Once again, MDL-COMP pretty comparable to CV tuning

(2 layer RELU neural tangent kernel)



Summary
MDL-COMP—a modified NML complexity measure using optimal ridge estimators 

• Not just parameter count—  scaling for  with Gaussian covariates


• Hints that double descent likely due to choice of estimator


• Provides competitive-to-CV but computationally-better hyper-parameter tuning


• Open questions: 
 
    Analytical relations between MDL-COMP and out-of-sample generalization? 
 
    MDL-COMP for classification + complex models like neural networks?

log d d ≫ n

https://rzrsk.github.io

https://rzrsk.github.io


Additional slides



Bias-variance tradeoff: Few things to note..

• We should expect a tradeoff given 


• some fixed data 


• as the “complexity” of the fitted  
estimator changes


• Do not expect a tradeoff for


• poor choice of estimators


• poor choice of complexity



MDL-COMP for kernel methods



Universal codes induced by kernel ridge regression

• Define the code : 

                        

where  
                           


• This choice comes from kernel ridge regression: 
 

                              

Qλ

qλ(y) ∝ exp (−
1

2σ2
∥K ̂θ λ − y∥2 −

λ
2σ2

̂θ ⊤
λ K ̂θ λ)

̂θ λ = min
θ

∥Kθ − y∥2 + λθ⊤Kθ = (K + λI)−1y

min
f∈ℋ

n

∑
i=1

( f(xi) − yi)2 + λ∥f∥2
ℋ



Kernel ridge regression

• One can show that for the optimization proboem 
 

                              , 

 
it suffices to consider the functions of the form 
                  

                                  , 

 
and this leads to the kernel ridge regression problem in the previous slide

min
f∈ℋ

n

∑
i=1

( f(xi) − yi)2 + λ∥f∥2
ℋ

f =
n

∑
i=1

θiK(xi, ⋅ )



MDL-COMP for kernel regression

• Let  denote the eigenvalues of the kernel matrix  and suppose 
 for some  in RKHS of , then 

                         
 

                   

 
(no easy closed-form)


• Since there is only a single hyper-parameter, we can directly take    
                  
                           

ρi (K(xi, xj))n
i,j=1

y ∼ 𝒩( f ⋆(X), σ2In) f ⋆ K

ℛopt ≤
1
2n [ min

λ

λ∥f ⋆∥2
ℋ

σ2
+

n

∑
i=1

log (1 +
ρi

λ )]

MDL − COMP = ℛopt



Unpacking MDL-COMP for Sobolev kernels

• For Sobolev kernel of smoothness , the eigenvalues decay like , 
and one can derive 
 
 

                                    

α ρi ∼ i−2α

ℛopt ≤ C ( ∥f ⋆∥2
ℋ

σ2 )
1

2α + 1

⋅ n− 2α
2α + 1



Neural tangent kernels (NTK)



Jacot et al. 2018

NTK approximates neural net with infinite width

• Varies with number of layers and nonlinearity 

•  

• Analytical expressions for simple architectures  
(e.g., cosine kernel for 2 layer Relu networks) 

• Software libraries for computing the kernel for deeper networks                       

K(x, x′￼) = 𝔼θ∼W [⟨ ∂f(θ, x)
∂θ

,
∂f(θ, x′￼)

∂θ ⟩]



Kernel version of the computation




where  
 
           and     denote the eigenvalues of the kernel matrix 

Prac-MDL-COMP = min
λ

log ( 1
qλ(y) )

= min
λ [ ∥K ̂θ λ − y∥2

2σ2
+

λ ̂θ ⊤
λ K ̂θ λ

2σ2
+

n

∑
i=1

log (1 +
ρi

λ )]
̂θ λ = (K + λI)−1y ρi K



Proofs



Proof sketch for linear models







Proof sketch for the result with Gaussian X

• When  has i.i.d.  entries, then for 
 

• The matrix  has uniform distribution over the set of  orthonormal 
matrices and hence for any fixed , the coordinates of  are 

identically distributed, and we can use the approximation 

X ∈ ℝn×d 𝒩(0,1/n)
X⊤X = Udiag(ρ1, …, ρd)U⊤

U d × d
θ⋆ w = U⊤θ⋆

w2
i ≈

∥θ⋆∥2

d



Proof sketch for the result with Gaussian X

• When  has i.i.d.  entries, then for  



• The eigenvalues  follow Marcenko-Pastur Law with the following approximation


• 


•

X ∈ ℝn×d 𝒩(0,1/n)
X⊤X = Udiag(ρ1, …, ρd)U⊤

ρi

d ≪ n, X⊤X ≈ Id, ρi ≈ 1

d > n, X⊤X ≈ [
d
n In 0
0 0], ρi { ≈ d

n , i ≤ n
= 0, i > n

Marcenko-Pastur 67, Silverstein 95, Tulino-Verdu 04



Two-stage MDL



Two-stage MDL

• Consider a parametric class of codes , and then use the valid 
codelength for any fixed  
 

                                     


• Minimizing this codelength is same as MLE over the given parametric class


• But the choice of  varies with , so need to account for the codelength 
needed to transmit the value of  

{pθ, θ ∈ Θ}
pθ

log ( 1
pθ(y) )

̂θ y ̂θ



Two-stage MDL

• Thus the overall codelength is  
 

                                     


• For a fixed parametric class, same as MLE (since the second term is constant)


• For a family of parametric classes, same as BIC procedure (model selection)

log ( 1
p ̂θ (y) ) +

d
2

log n

Codelength for data Codelength for -dimensional 
parameter upto  resolution

d
1/ n



MDL-COMP vs Cross-validation

• For  covariates, for each value of , the computational costs are 

• K-fold cross-validation: K x OLS solver = 


• Prac-MDL-COMP:  1 x SVD solver =  

n × d λ

K × (nd2 + min(n3, d3))

nd2 + n2d

Prac-MDL-COMP provides a proxy for complexity and saves K-fold computation!



Issues with NML



Issues with NML: Linear model

• Then  is given by  
 

       

 
    
              
 
(We can use min-norm OLS when )

QNML

qNML(y) ∝ max
θ

pθ(y) = p ̂θ (y) =
1

(2πσ2)n/2
exp (−

1
2σ2

∥X ̂θ − y∥2)
̂θ = arg max pθ(y) = arg min

θ
∥Xθ − y∥2 = ̂θ OLS

d > n



Issues with NML: Linear model

• If  is not compact (even when d<n) 
 

                 

• Easiest to see when   so that , and we have  
 

                  

 

𝒴

∫
1

(2πσ2)n/2
exp (−

1
2σ2

∥X ̂θ − y∥2) dy = ∞

d > n X ̂θ = y

∫
1

(2πσ2)n/2
exp (−

1
2σ2

∥X ̂θ − y∥2) dy = ∫ℝn

1
(2πσ2)n/2

dy = ∞

Grunwald 07



• When , the expected code-length when using code  is given by 
 

                       


• Minimized when , since redundancy is non-negative


•  also minimizes the worst-case regret 
 

 such that

y ∼ P⋆ Q

𝔼y∼P⋆ log ( 1
Q(y) ) = 𝕂𝕃(P⋆∥Q) + H(P⋆)

Q = P⋆

P⋆

p⋆ = arg min
q

max
y [log ( 1

q(y) ) − log ( 1
p⋆(y) )] ∫ q(z)dz ≤ 1

Optimal code: With known true model  is P⋆ P⋆



Expressions



Unpacking the result for Gaussian X
Slow logarithmic growth in overparameterized regime ( )d ≫ n

• When  has i.i.d.  entries,  then 
 

MDL-COMP  

 
 
[here  denotes the true dimensionality of , and we assume  where 

 denotes the first  columns of ; and ]

X ∈ ℝn×d 𝒩(0,1/n)

≈

d
n log (1 +

d⋆

r2 ) + d
n log ( 1

Δ ), if d ∈ [1,d⋆]

d
n log (1 + d

r2 ) + d
n log ( 1

Δ ), if d ∈ [d⋆, n]

log ( d
n + d

r2 ) + log ( 1
Δ ), if d ∈ [n, ∞)

d⋆ θ⋆ 𝔼[y |X] = X̃θ⋆

X̃ d⋆ X r2 = ∥θ⋆∥2



MDL-COMP scaling for other 
designs 



Numerical computation: Another example

n = 200, σ2 = 0.1, X ∼ 𝒩(0, [16Is 0
0 Id−s])

MDL-COMP


