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Classical Wisdom: Modern Phenomenon: Fit without fear!
Use the largest model that achieves zero training error
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Is double descent a conundrum for the classical wisdom?

We expect the classical U-shaped tradeoff given a fixed dataset, and as the
‘complexity” of the fitted estimator varies

d = number of features
n = number of samples
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Is double descent a conundrum for the classical wisdom?
We expect the classical U-shaped tradeoff given a fixed dataset, and as the

‘complexity” of the fitted estimator varies in_ a good estimator class
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Is double descent a conundrum for the classical wisdom?

We expect the classical U-shaped tradeoff given a fixed dataset, and as the
‘complexity” of the fitted estimator varies in_ a good estimator class

Need to pay attention to
e the estimator class, as well as

 the complexity measure

Is parameter counting a valid complexity measure,
especially for d > n?

d = number of features
n = number of samples



Complexity: A tricky concept

A fundamental notion: Kolmogorov's algorithmic complexity

Complexity in Statistics and ML: Useful for model selection

e Test error ~ Train error + Complexity / n“

e X-axis in bias-variance—often vaguely defined; parameter count often used

n = number of samples



Parameter counting as complexity

Origins for linear regression: y = X0* + ¢

e Akaike Information Criterion (AIC): d/2
d

. Bayesian information criterion (BIC): —logn

2
PR T
Rademacher complexity: [sup Z EiX 6’] ~ d

e Degrees of freedom: trace(X ' X) ~ d

e Vapnik-Chervonenkis dimension: d

d
. Minimum description length complexity: > log n (asymptotically)

d = number of features
n = number of samples



but In high-dimensions these complexity
measure neither work nor theoretically well-
justified

this talk:
a data-dependent complexity using minimum
description length that is not just parameter count



Minimum Description Length (MDL)

“Choose the model that gives the shortest description of data”

e Developed by Rissanen with roots in Kolmogorov's algorithmic complexity,
also seen as a computable variant based on Shannon's information theory

 Probability models interpreted as codes:

A probability model Q on %/ «— Encoding observation y with log(

) bits
o)

Good fit «— Shorter codelength (description)

e Over the years: Two-stage MDL, mixture MDL, normalized maximum likelihood

Rissanen 76, 80, Barron-Rissanen-Yu 98, Hansen-Yu 02, Grunwald 07



Optimal codes from an MDL perspective

With unspecified generative model

Two possible objectives One objective can be generalized

e Minimum expected redundancy  Worst-case redundancy w.r.t. a postulated
class of codes{p,y, 0 € O}

| | 1 | 1
1 . 1 . . .
mqln [ 0g ( a0 ) 0g (p () )] m;n myax [log ( ) ) mgm log (pg(y) )]

e Minimum worst-case redundancy

Optimal code: Normalized maximum likelihood (NML)

o 1 1
" [log (E) T <p*<y>)] _ Mm%y Pyy)
dnpr(y) =
JIH&X@/ pQ/(Z)dZ

Rissanen 76, 80, Shtarkov 1981, Barron-Rissanen-Yu 98



NML Com pleXIty = nglxpg(y)dy

= Worst-case redundancy

= Expected redundancy under known P*

d

~ — log n with d-dimensional parametric codes (d < n)

2

However when

e E.g., even for the linear model y = X0™ + & with Gaussian noise & linear codes:

| A~
wheny € R" = ngxpe(y)dy “JeXP( 262”X‘90LS—YH2)dy = ©0.

o> = noise (¢) variance



This talk: Tackling the infinity problem of NML

e Prior fixes: Truncate the output space [Barron-Rissanen-Yu 98]
 This talk: Regularization + Modified NML complexity

e |n particular, using ridge reqgularization as that allows to obtain best
prediction performance across range of models and also enable analytical
calculations



Ridge luckiness normalized maximum likelihood
Weight the codes with a luckiness function on parameter space

» LNML principle: max p,(y) <> max p,(v)w, for some *“luckiness function” w,
0 0

 Our approach: Choose luckiness factors wy , induced by ridge regularization

o For linear models, each wy , leads to a modified LNML code ¢,

XD, — vl — —0TAD )
202 A 202 A

with 6, =min ||X0—y||>+0TA0 = XTX + A)"'XTy
0

ga(y) o exp (

02 = noise variance



Defining the MDL-Complexity

Via the optimal LNML code In a rich ridge class

| |
. To derive complexity: Optimize over A—min[E,_ . |log ( ) — log ( ) =R,
AT [ A () P*(y) .

e Choose a rich class of A: {UDU ", D > 0} with U = eigenvectors(X ' X)

e Account codelength for A (not present in usual NML):
NAUNES Z log(4;/A) for small enough (discretization) A

e Define the MDL-complexity as

|
MDL — COMP =—(R, .+ < (Agpz)) where Aopt achieves ROPt
n

opt



Main result: Analytical MDL-COMP for linear models

Not just parameter count, instead a function of covariate design & its interaction with signal

fy ~ N(X0*,06%1),and X' X = Udiag(p,, ...,p)U", w; = U'0*, then

1 min{n.,d} PiWi2
R()pt=; Z log| 1+ —

=1

min{n.,d} p)
MDIL — COMP = . E ] + ° + mi | d ] :
— = — O T min ,— O —
n S\t n >\ A

=1 :



Unpacking the result for Gaussian X

Slow logarithmic growth in overparameterized regime (d > n)
n =200, 6> =0.1, X ~ #(0,diag(1,27%, ..., d™%))

101 l
~logd
MDL-COMP
d . =100,a=0.§
100 d.=100,a=0.|
* d. =400,a=0.0
d. =400,a=0.

101 d, = true dimensionality

a = eigenvalue decay rate



Other favorable properties about MDL-COMP

The optimal regularization parameter defining linear MDL-COMP also achieves

» optimal regularization for the in-sample risk min E [Z?zl (x] é\A _ xiTH*)z]

A

e best worst-case redundancy over a family of noise distributions

min max
AN PeP

=y log(

ga(y)

) with P = {P|Ep(y|X) = X0*,Var(y | X) < 6°1,)

Also, MDL-COMP can be easily extended to kernel methods, where it informs
minimax in-sample risk



Consequences for double descent
Perhaps the issue lies in the estimator

e Since MDL-COMP is monotone in d, using it as the complexity does not
change the qualitative nature of the test MSE curves for OLS or ridge

 Double descent likely due to the choice of the estimator, e.g., min-norm OLS

e Conclusion not contradictory with literature on benign overfitting, which provide
sufficient conditions for interpolation to generalize well for d > n

... Belkin-Hsu-Ma-Mandal 18, Muthukumar-Vodrahalli-Sahai 19, Hastie-Montanari-Rosset-Tibshirani 19,
Tsigler-Bartlett 20, Wu-Xu 20, Nakkiran-Venkat-Kakade-Ma 20 ...



Can MDL-COMP be useful for practice?



Let’s make it computable from data

2 q,(y)

| I1xe, - yl? Mw min{n.d} P,
o [P 8

(/9\/1 = (X'X+AD)"'X"y and p; denote the eigenvalues of X'x

1
Prac-MDL-COMP = min log ( )

where



Model selection with Prac-MDL-COMP

Test MSE minimizer close to the minimizer of Prac-MDL-COMP objective
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Model selection with Prac-MDL-COMP

Test MSE
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Prac-MDL-COMP removes the double descent

Test performance competitive compared to cross-validation

. Prac-MDL-COMP

|




Using Prac-MDL-COMP for hyperparameter tuning

Xé\ L2 /1 0 2 mln{nd}
i X6, —yl| | /IH Z 10g<1+/01)

A 20% 20%

K-fold computational savings compared to K-fold cross validation (CV)




Experiments on PMLB datasets

1000
Diverse set of tabular datasets
.y : | ®
Predicting breast cancer from image features ¢
d & © @ )
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PMLB: a large benchmark suite for machine learning evaluation and comparison
Olson-Cava-Orzechowski-Urbanowicz-Moore 17



Experiments on PMLB datasets
MDL-COMP better for hyper-parameter tuning in low-data settings
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Experiments on fMRI data from 100 voxels

MDL-COMP better than Bayesian-ARD regression, and pretty comparable to CV tuning
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Experiments on neural tangent kernels

(2 layer RELU neural tangent kernel)
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Once again, MDL-COMP pretty comparable to CV tuning



Summary

MDL-COMP—a modified NML complexity measure using optimal ridge estimators

» Not just parameter count—log d scaling for d > n with Gaussian covariates
e Hints that double descent likely due to choice of estimator
 Provides competitive-to-CV but computationally-better hyper-parameter tuning
e Open questions:
Analytical relations between MDL-COMP and out-of-sample generalization”?

MDL-COMP for classification + complex models like neural networks?

https://rzrsk.github.io
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Bias-variance tradeoff: Few things to note..

 \We should expect a tradeoff given
e some fixed data 101

e as the "complexity” of the fitted
estimator changes

Test MSE
V4

e Do not expect a tradeoff for

e poor choice of estimators \ )

e poor choice of complexity 102 10° 102



MDL-COMP for kernel methods



Universal codes induced by kernel ridge regression

o Define the code Q;:

A
HK@ Y\Iz——é’TKé’ )
202

q,(y) x exp (

where

N

0, = min ||KO — y||* + 10" KO = (K + A~y
0

* This choice comes from kernel ridge regression:

min Z (fx) = y)* + A%,

fe%



Kernel ridge regression

e One can show that for the optimization proboem

min ) (f(x) —y)* + 213,

e -
=

It suffices to consider the functions of the form
n
f: 2 HiK(xia ) )!
i=1

and this leads to the kernel ridge regression problem in the previous slide



MDL-COMP for kernel regression

« Let p; denote the eigenvalues of the kernel matrix (K(x;, )cj))?j:1 and suppose
y ~ N (f*(X), 6°l) for some f* in RKHS of K, then

N [V P o
min ——— + log | 1 +—
] o2 lzzl 5 A

P < —

(no easy closed-form)

e Since there is only a single hyper-parameter, we can directly take

MDL — COMP = R,,,,



Unpacking MDL-COMP for Sobolev kernels

e For Sobolev kernel of smoothness «, the eigenvalues decay like p; ~ i_za,

and one can derive

1

200+ 1
[TallE !
L%OPZ‘ S C( f 7 N 2a2+1

G2



Neural tangent kernels (NTK)



NTK approximates neural net with infinite width

Jacot et al. 2018

e Varies with number of layers and nonlinearity

o1 (0, of(0, x’
, K(x,x") =Ey_w [< f(aHX)’%>]

e Analytical expressions for simple architectures
(e.g., cosine kernel for 2 layer Relu networks)

o Software libraries for computing the kernel for deeper networks



Kernel version of the computation

1
Prac-MDL-COMP = min log ( )

y q,(y)

. \\K@—yﬂz /1‘/9\}[{‘/9\,1 - %
=min | ————+——+ ) log| 1 +—

p [ 207 207 z=21 5 A

where

«/9\/1 = (K+ A)"'y and p; denote the eigenvalues of the kernel matrix K



Proofs



Proof sketch for linear models

p(}’; X 0*)]
aa(y)
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1
;DKL(PG, | Qa) =T1 + T3 + T3

, min{n,d} 5 ©
. min1{n, d 1 s o 4 1) A
(34) ", d} e Z (piw;/ JAi
2n 2N - Ai + 0;
U \ ’
=:fi(Ai)
Finally to compute the R,y (32), we need to minimize the KL-divergence (34) where we
note the objective depends merely on Ay, ..., Ay q)- We note that the objective (RHS of

equation (34)) 1s separable in each term A;. We have

(piw?/o? + 1) | 1 B
(l—l—[)z‘/)\i)z | 1+[).i//\.i B

35 fl()=0 < 0

J 1




Proof sketch for the result with Gaussian X

e When X € R™4 has i.i.d. #(0,1/n) entries, then for
X'X = Udiag(py, ...,p)U"

e The matrix U has uniform distribution over the set of d X d orthonormal
matrices and hence for any fixed 0, the coordinates of w = U '0* are

16]°
d

identically distributed, and we can use the approximation wl.2 N



Proof sketch for the result with Gaussian X

e When X € R™4 has i.i.d. #/(0,1/n) entries, then for
X'X = Udiag(py, ...,p)U"

e The eigenvalues p; follow Marcenko-Pastur Law with the following approximation

ed<n, X'Xw~I, p=~I1

d
) d>n, X'X=~ ;I”’ 0 , P
0O O =

Marcenko-Pastur 67, Silverstein 95, Tulino-Verdu 04

&

O I |~

., 1<nm

, I>n



Two-stage MDL



Two-stage MDL

o Consider a parametric class of codes {p,, 0 € O}, and then use the valid
codelength for any fixed py

|
Po(y)

log

 Minimizing this codelength is same as MLE over the given parametric class

e But the choice of (/9\ varies with y, so need to account for the codelength
needed to transmit the value of €



Two-stage MDL

* Thus the overall codelength is

1 d
+ —logn
Py () 2

Codelength for data

log

* For a fixed parametric class, same as MLE (since the second term is constant)

 For a family of parametric classes, same as BIC procedure (model selection)



MDL-COMP vs Cross-validation

e For n X d covariates, for each value of 4, the computational costs are

e K-fold cross-validation: K x OLS solver = K X (nal2 -+ min(ng, d3))

e Prac-MDL-COMP: 1 x SVD solver = nd? + nd



Issues with NML



Issues with NML: Linear model

e Then Qyy,s is given by

1 A~
X max =pi(y) =——exp | ——||1X0 — ||
Inmry) & Max py(y) = p(y) RPN p( 2| ]| )

0 = arg max py(y) = arg min || X6 — y|I* = ‘/9\0LS
0

(We can use min-norm OLS when d > n)



Issues with NML: Linear model

o If % is not compact (even when d<n)

| | ~
> _
JW exp (—2—02”)(6’ — ) dy = o0

e Easiestto seewhend > n so thatX«/é’\ =y, and we have

| | A |
S—"C G ) ‘¢ ) 7V [ ——

Grunwald Q7



Optimal code: With true model P*

e When y ~ P*, the expected code-length when using code Q is given by

1 *
= _pelog <@) = KL(P*||Q) + H(P*)

e Minimized when Q = P, since redundancy is non-negative

p* max [log (L) — log ( : )] such thath(z)dz <1
y q(y) p*y)



EXpressions



Unpacking the result for Gaussian X

Slow logarithmic growth in overparameterized regime (d > n)

e When X € R has i.i.d. #/(0,1/n) entries, then

%log (1 +%> +%10g (%), ifd e [1,d,]

MDL-COMP =~ %log (1 +i2> +%log (%), ifd € |d,,n]

log( i)+10g (%), ifd € [n, o)

[here d, denotes the true dimensionality of 0™, and we assume
Xdenotes the first d, columns of X; and r* = ||6*||“]

“[v | X] = X6* where




MDL-COMP scaling for other
designs



Numerical computation: Another example
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