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Part II:  
Theoretical guarantees for Markov Chain Monte Carlo (MCMC)

• Main question: How many MCMC iterations  
are needed to get a desired accuracy? 
 
                 


• Insights en route: How much does gradient 
information help for sampling?

(T)

∥P⋆ − P(XT)∥tv ≤ δ

Joint work with Chen-Wainwright-Yu
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• Find mode of the density (or MAP) 
          
 
 
 
 

• Gradient descent 
                

x⋆ ← arg max p⋆ = arg min f

xk = xk−1 − h∇f(xk−1)

Sampling versus optimization

• Draw samples from the density 
                  
 
 

• Unadjusted Langevin algorithm (ULA) 
                                                                  
                                              

X ∼ p⋆ ∝ e−f

Xk = Xk−1 − h∇f(Xk−1) + 2hξk
ξk ∼ 𝒩(0,Id)
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’81 Parisi ’94 Grenander-Miller, ’96 Roberts-Tweedie



Langevin algorithms: Origin
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• Langevin diffusion 
           
                      


• Under mild assumptions, converges to the right limiting distribution 
    
                    


• ULA updates: Forward Euler discretization of Langevin diffusion 
 
                       

dXt = − ∇f(Xt)dt + 2dBt

∥P(Xt) − P⋆∥tv → 0 as t → ∞ (p⋆ ∝ e−f)

Xk = Xk−1 − h∇f(Xk−1) + 2hξk



Langevin algorithms: Origin
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• Langevin diffusion 
           
                      


• Under mild assumptions, converges to the right limiting distribution 
    
                    


• ULA updates: Forward Euler discretization of Langevin diffusion 
 
                       

dXt = − ∇f(Xt)dt + 2dBt

∥P(Xt) − P⋆∥tv → 0 as t → ∞ (p⋆ ∝ e−f)

Xk = Xk−1 − h∇f(Xk−1) + 2hξk
How to choose ?

How many steps to take?

h



ULA simulation: Trade-offs with step size
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ULA simulation: Trade-offs with step size
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ULA: Bias-mixing trade off with step size
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Can we remove the bias? Yes..via accept-reject correction

• Metropolis-adjusted Langevin algorithm (MALA)


• Use ULA updates as proposals (Gaussian)  
                          


• Accept  with probability 

                    


• In case of rejection, stay at 

z = x − h∇f(x) + 2hξ

z

min {1,
e−f(z) ⋅ Ph(z → x)
e−f(x) ⋅ Ph(x → z) }

x

Ratio of Gaussian 
proposal densities
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MALA simulation: Fast convergence with no bias
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MALA simulation: Fast convergence with no bias
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How to choose ?

How many steps to 
take?

h

Discrete  
TV error



Several asymptotic and non-explicit guarantees

• Existence, Harris recurrence  
[’95 Meyn-Tweedie, ’96 Roberts-Rosenthal, ’00 Diaconis-Holmes-Neal,…]


• Weak convergence and diffusion limits as   
[’98 Roberts-Rosenthal, ’12 Pillai et al., ’10 Beskos et al.,…]


• Geometric and uniform ergodicity, Lyapunov coupling 
[’96 Roberts-Tweedie, ’04 Roberts-Rosenthal,  ’09 Bou-Rabee-Hairer, ’16 Livingstone et al.,…]

d → ∞
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• Assumption: Log-concave target density 
 in  with  strongly convex and 

smooth 
               


• Mixing-time guarantee: Bound on 
iterations  with dimension , 
conditioning , error  such that 
 
                  

p⋆ ∝ e−f ℝd f

m𝕀d ⪯ ∇2f ⪯ L𝕀d; κ = L/m

T d
κ δ

∥P⋆ − P(XT)∥tv ≤ δ

κ = 1

κ = 7

Our goal: Explicit non-asymptotic guarantees
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Contour sets of 
distributions



Non-asymptotic mixing time for Langevin algorithms

ULA

[’15 Dalalyan]

Mixing time dκ2 log(1/δ)
δ2

p⋆ ∝ e−f with f : ℝd → ℝ convex 

m𝕀d ⪯ ∇2f ⪯ L𝕀d; κ = L/m
∥P⋆ − P(XT)∥tv ≤ δ
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Non-asymptotic mixing time for Langevin algorithms

ULA

[’15 Dalalyan]

MALA

[Our work]

Mixing time dκ log(1/δ)dκ2 log(1/δ)
δ2

p⋆ ∝ e−f with f : ℝd → ℝ convex 

m𝕀d ⪯ ∇2f ⪯ L𝕀d; κ = L/m
∥P⋆ − P(XT)∥tv ≤ δ

Accept-reject helps

- Exponentially better 

dependence on 


- Better dependence on 
δ

κ
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ULA

[’15 Dalalyan]

MALA

[Our work]

Mixing time

Step size

dκ log(1/δ)dκ2 log(1/δ)
δ2

p⋆ ∝ e−f with f : ℝd → ℝ convex 

m𝕀d ⪯ ∇2f ⪯ L𝕀d; κ = L/m
∥P⋆ − P(XT)∥tv ≤ δ

δ2

dκL
1

dL
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Non-asymptotic mixing time for Langevin algorithms

Accept-reject helps

- Exponentially better 

dependence on 


- Better dependence on 
δ

κ

no bias in MALA allows 
larger step size and faster 

mixing



Next: How does gradient information help?

Metropolis-adjusted Langevin 
algorithm (MALA)

Proposal step
one gradient step

Mixing time

Step size

z = x − h∇f(x) + 2hξ
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p⋆ ∝ e−f with f : ℝd → ℝ convex 

m𝕀d ⪯ ∇2f ⪯ L𝕀d; κ = L/m
∥P⋆ − P(XT)∥tv ≤ δ

1
dL

dκ log(1/δ)



MRW: No gradient leads to slower mixing

Metropolis

random walk (MRW)

Metropolis-adjusted Langevin 
algorithm (MALA)

Proposal step
 
 

no gradient one gradient step

Mixing time

Step size

z = x − h∇f(x) + 2hξz = x + 2hξ
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1
dL

1
dκL

dκ log(1/δ)dκ2 log(1/δ)

p⋆ ∝ e−f with f : ℝd → ℝ convex 

m𝕀d ⪯ ∇2f ⪯ L𝕀d; κ = L/m
∥P⋆ − P(XT)∥tv ≤ δ



HMC: Multiple gradient steps help mix faster

Metropolis

random walk (MRW)

Metropolis-adjusted Langevin 
algorithm (MALA)

Metropolis-adjusted 
Hamiltonian Monte Carlo 

(HMC)

Proposal step
 
 

no gradient one gradient step

Discretized Hamiltonian 
dynamics using  

gradients per step

Mixing time

Step size

z = x − h∇f(x) + 2hξz = x + 2hξ K
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1
dL

1
dκL

1
d 7

12 L 1
2

(K = d
1
4)

dκ log(1/δ)dκ2 log(1/δ) d
2
3κ log(1/δ)

Total #gradients = d
11
12κ log(1/δ)

p⋆ ∝ e−f with f : ℝd → ℝ convex 

m𝕀d ⪯ ∇2f ⪯ L𝕀d; κ = L/m
∥P⋆ − P(XT)∥tv ≤ δ



HMC: Multiple gradient steps help mix faster

Metropolis

random walk (MRW)

Metropolis-adjusted Langevin 
algorithm (MALA)

Metropolis-adjusted 
Hamiltonian Monte Carlo 

(HMC)

Proposal step
 
 

no gradient one gradient step

Discretized Hamiltonian 
dynamics using  

gradients per step

Mixing time

Step size

z = x − h∇f(x) + 2hξz = x + 2hξ K
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1
dL

1
dκL

1
d 7

12 L 1
2

(K = d
1
4)

dκ log(1/δ)dκ2 log(1/δ) d
2
3κ log(1/δ)

Total #gradients = d
11
12κ log(1/δ)

Previous HMC bounds either worse than MALA or had 
 dependence due to no accept-reject step1/δ2

p⋆ ∝ e−f with f : ℝd → ℝ convex 

m𝕀d ⪯ ∇2f ⪯ L𝕀d; κ = L/m
∥P⋆ − P(XT)∥tv ≤ δ



MALA

MRW

HMC

Better use of gradients 
leads to faster mixing

- gradient info

+ multiple  
gradients

Refs: 1. Log-concave sampling: Metropolis-Hastings algorithms are fast

         [Dwivedi*-Chen*-Wainwright-Yu, JMLR ’19]

         2. Fast mixing of Metropolized Hamiltonian Monte Carlo: Benefits of multi-step gradients 
         [Chen-Dwivedi-Wainwright-Yu, JMLR ’20]

Summary of MCMC guarantees

ULA
+ accept reject

exponentially 
better mixing 

time
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