

Non-asymptotic Guarantees for High-Dimensional Sampling

Raaz Dwivedi EECS Department

Part II: Theoretical guarantees for Markov Chain Monte Carlo (MCMC)

• Main question: How many MCMC iterations (T)are needed to get a desired accuracy?

$\|\mathbf{P}^{\star} - \mathbf{P}(X_T)\|_{\text{tv}} \leq \delta$

• Insights en route: How much does gradient information help for sampling?

Joint work with Chen-Wainwright-Yu

Sampling versus optimization

• Draw samples from the density

$X \sim p^{\star} \propto e^{-f}$

• Unadjusted Langevin algorithm (ULA) $X_{k} = X_{k-1} - h \nabla f(X_{k-1}) + \sqrt{2h} \xi_{k}$ $\xi_{k} \sim \mathcal{N}(0, I_{d})$

'81 Parisi '94 Grenander-Miller, '96 Roberts-Tweedie

• Find mode of the density (or MAP) $x^* \leftarrow \arg \max p^* = \arg \min f$

Gradient descent

 $x_k = x_{k-1} - h \nabla f(x_{k-1})$

Langevin algorithms: Origin

• Langevin diffusion

$$dX_t = -\nabla f(X_t)dt + \sqrt{2}dB_t$$

Under mild assumptions, converges to the right limiting distribution

$$\|\mathbf{P}(X_t) - \mathbf{P}^{\star}\|_{\mathsf{tv}} \to 0 \text{ as } t \to \infty \ (p^{\star} \propto e^{-f})$$

• ULA updates: Forward Euler discretization of Langevin diffusion

$$X_{k} = X_{k-1} - h \nabla f(X_{k-1}) + \sqrt{2h}\xi_{k}$$

Langevin algorithms: Origin

• Langevin diffusion

$$dX_t = -\nabla f(X_t)dt + \sqrt{2}dB_t$$

Under mild assumptions, converges to the right limiting distribution

$$\|\mathbf{P}(X_t) - \mathbf{P}^{\star}\|_{\mathsf{tv}} \to 0 \text{ as } t \to \infty \ (p^{\star} \propto e^{-f})$$

• ULA updates: Forward Euler discretization of Langevin diffusion

$$X_{k} = X_{k-1} - h \nabla f(X_{k-1}) + \sqrt{2h}\xi_{k}$$

How to choose *h*? How many steps to take?

ULA simulation: Trade-offs with step size

ULA simulation: Trade-offs with step size

ULA: Bias-mixing trade off with step size

Can we remove the bias? Yes..via accept-reject correction

Metropolis-adjusted Langevin algorithm (MALA)

 Use ULA updates as proposals (Gaussian) $z = x - h\nabla f(x) + \sqrt{2h}\xi$

• Accept *z* with probability $\min\left\{1, \frac{e^{-f(z)} \cdot \mathbf{P}}{e^{-f(x)} \cdot \mathbf{J}}\right\}$

• In case of **rejection**, stay at x

$$\mathbf{P}_{h}(z \to x)$$
$$\mathbf{P}_{h}(x \to z)$$

Ratio of Gaussian proposal densities

MALA simulation: Fast convergence with no bias

600 Iteration

MALA simulation: Fast convergence with no bias

300 400 500 600 Iteration

Several asymptotic and non-explicit guarantees

- Existence, Harris recurrence ['95 Meyn-Tweedie, '96 Roberts-Rosenthal, '00 Diaconis-Holmes-Neal,...]
- Weak convergence and diffusion limits as $d \rightarrow \infty$ ['98 Roberts-Rosenthal, '12 Pillai et al., '10 Beskos et al.,...]
- Geometric and uniform ergodicity, Lyapunov coupling

['96 Roberts-Tweedie, '04 Roberts-Rosenthal, '09 Bou-Rabee-Hairer, '16 Livingstone et al.,...]

Our goal: Explicit non-asymptotic guarantees

• Assumption: Log-concave target density $p^{\star} \propto e^{-f}$ in \mathbb{R}^d with f strongly convex and smooth

$m\mathbb{I}_d \leq \nabla^2 f \leq L\mathbb{I}_d; \ \kappa = L/m$

• Mixing-time guarantee: Bound on iterations T with dimension d, conditioning κ , error δ such that

$$\|\mathbf{P}^{\star} - \mathbf{P}(X_T)\|_{\mathrm{tv}} \leq \delta$$

Contour sets of distributions

Non-asymptotic mixing time for Langevin algorithms

 $\|\mathbf{P}^{\star} - \mathbf{P}(X_T)\|_{\mathrm{tv}} \leq \boldsymbol{\delta}$

$p^* \propto e^{-f}$ with $f : \mathbb{R}^d \to \mathbb{R}$ convex $m\mathbb{I}_d \leq \nabla^2 f \leq L\mathbb{I}_d; \ \kappa = L/m$

Non-asymptotic mixing time for Langevin algorithms

 $\|\mathbf{P}^{\star} - \mathbf{P}(X_T)\|_{\text{tv}} \leq \delta$

$p^* \propto e^{-f}$ with $f : \mathbb{R}^d \to \mathbb{R}$ convex $m\mathbb{I}_d \leq \nabla^2 f \leq L\mathbb{I}_d; \ \kappa = L/m$

LA alalyan]	MALA [Our work]		
$\frac{\log(1/\delta)}{\delta^2}$	$d\kappa \log(1/\delta)$	Accept-reject helps - Exponentially better dependence on δ - Better dependence on i	

К

Non-asymptotic mixing time for Langevin algorithms

 $\|\mathbf{P}^{\star} - \mathbf{P}(X_T)\|_{\text{tv}} \leq \delta$

$p^* \propto e^{-f}$ with $f : \mathbb{R}^d \to \mathbb{R}$ convex $m\mathbb{I}_d \leq \nabla^2 f \leq L\mathbb{I}_d; \ \kappa = L/m$

LA alalyan]	MALA [Our work]	
$\delta \frac{\delta^2}{\delta^2}$	$d\kappa \log(1/\delta)$	Accept-reject helps - Exponentially better dependence on δ - Better dependence on k
δ^2 kL	$\frac{1}{dL}$	no bias in MALA allows larger step size and faste mixing

Next: How does gradient information help? $\|\mathbf{P}^{\star} - \mathbf{P}(X_T)\|_{\text{tv}} \leq \delta \qquad p^{\star} \propto e^{-f} \text{ with } f : \mathbb{R}^d \to \mathbb{R} \text{ convex}$

	N
Proposal step	Z
Mixing time	
Step size	

 $m\mathbb{I}_d \leq \nabla^2 f \leq L\mathbb{I}_d; \ \kappa = L/m$

letropolis-adjusted Langevin algorithm (MALA)

$$z = x - h\nabla f(x) + \sqrt{2h}\xi$$

one gradient step

 $d\kappa \log(1/\delta)$

$$\frac{1}{dL}$$

MRW: No gradient leads to slower mixing

	Metropolis random walk (MRW)	Ν
Proposal step	$z = x + \sqrt{2h}\xi$ no gradient	
Mixing time	$d\kappa^2 \log(1/\delta)$	
Step size	$\frac{1}{d\kappa L}$	

 $\|\mathbf{P}^{\star} - \mathbf{P}(X_T)\|_{\text{tv}} \leq \delta \qquad p^{\star} \propto e^{-f} \text{ with } f : \mathbb{R}^d \to \mathbb{R} \text{ convex}$ $m\mathbb{I}_d \leq \nabla^2 f \leq L\mathbb{I}_d; \ \kappa = L/m$

> letropolis-adjusted Langevin algorithm (MALA)

$$z = x - h\nabla f(x) + \sqrt{2h}\xi$$

one gradient step

 $d\kappa \log(1/\delta)$

$$\frac{1}{dL}$$

HMC: Multiple gradient steps help mix faster $\|\mathbf{P}^{\star} - \mathbf{P}(X_T)\|_{\text{tv}} \leq \delta \qquad p^{\star} \propto e^{-f} \text{ with } f : \mathbb{R}^d \to \mathbb{R} \text{ convex}$

	Metropolis random walk (MRW)	Metropolis-adjusted Langevin algorithm (MALA)	Metropolis-adjusted Hamiltonian Monte Carlo (HMC)
Proposal step	$z = x + \sqrt{2h}\xi$ no gradient	$z = x - h \nabla f(x) + \sqrt{2h} \xi$ one gradient step	Discretized Hamiltonian dynamics using <i>K</i> gradients per step
Mixing time	$d\kappa^2 \log(1/\delta)$	$d\kappa \log(1/\delta)$	$d^{\frac{2}{3}}\kappa\log(1/\delta)$
Step size	$\frac{1}{d\kappa L}$	$\frac{1}{dL}$	$\frac{1}{d^{\frac{7}{12}}L^{\frac{1}{2}}} (K = d^{\frac{1}{4}})$

 $m\mathbb{I}_d \leq \nabla^2 f \leq L\mathbb{I}_d; \ \kappa = L/m$

Total #gradients = $d^{\frac{11}{12}} \kappa \log(1/\delta)$

HMC: Multiple gradient steps help mix faster $\|\mathbf{P}^{\star} - \mathbf{P}(X_T)\|_{\text{tv}} \leq \delta \qquad p^{\star} \propto e^{-f} \text{ with } f : \mathbb{R}^d \to \mathbb{R} \text{ convex}$

	Metropolis random walk (MRW)	Metropolis-adjusted Langevin algorithm (MALA)	Metropolis-adjusted Hamiltonian Monte Carlo (HMC)
Proposal step	$z = x + \sqrt{2h}\xi$ no gradient	$z = x - h \nabla f(x) + \sqrt{2h} \xi$ one gradient step	Discretized Hamiltonian dynamics using <i>K</i> gradients per step
Mixing time	$d\kappa^2 \log(1/\delta)$	$d\kappa \log(1/\delta)$	$d^{\frac{2}{3}}\kappa\log(1/\delta)$
Step size	$\frac{1}{d\kappa L}$	$\frac{1}{dL}$	$\frac{1}{d^{\frac{7}{12}}L^{\frac{1}{2}}} (K = d^{\frac{1}{4}})$
			$\frac{11}{11}$ 1 (1/C)

 $m\mathbb{I}_d \leq \nabla^2 f \leq L\mathbb{I}_d; \ \kappa = L/m$

lotal #gradients = $d^{12}\kappa \log(1/\delta)$ Previous HMC bounds either worse than MALA or had $1/\delta^2$ dependence due to no accept-reject step

Summary of MCMC guarantees MRW + accept reject ULA MALA exponentially better mixing time HMC

Refs: 1. Log-concave sampling: Metropolis-Hastings algorithms are fast [**Dwivedi***-Chen*-Wainwright-Yu, JMLR '19] **2.** Fast mixing of Metropolized Hamiltonian Monte Carlo: Benefits of multi-step gradients [Chen-**Dwivedi**-Wainwright-Yu, JMLR '20]

Better use of gradients leads to faster mixing