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Random Sampling

• We consider the problem of drawing random samples 
from a given density (known up-to proportionality) 
 
 

X1, X2, . . . , Xm ∼ π
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Sampling: A fundamental task

X1, X2, . . . , Xm ∼ π

E [g(X)] =

∫
g(x)π(x)dx ≈ 1

m

m∑

i=1

g(Xi)

Monte Carlo 
Approximations 

Rare event 
simulations 

Bayesian 
inference

Sampling Integration

Sampling Optimization

sample from e−g(x)/T

Zeroth order 
optimization 

Escaping 
saddle points 

Simulated 
annealing

min
x

g(x)
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Popular recipes for sampling

• Rejection sampling


• Gibbs sampling


• Markov Chain Monte Carlo (MCMC) methods
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Popular recipes for sampling

• Rejection sampling


• Gibbs sampling


• Markov Chain Monte Carlo (MCMC) methods
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In high dimensions 
too many rejections

Requires tractable 
conditional distributions

Require 
knowledge of density up to 

proportionality



• Design of Markov Chain 

• Starting point: random or deterministic


• Transition distribution: given a point, how to make a transition


• Target distribution


• Mixing Time 

• Number of steps steps after which the distribution of the 
chain is close to the target distribution 

MCMC 101



• Typical two step design for 


• Proposal step: 
 

• Accept-reject step: Accept z with probability 
 
 

MCMC 102:  
Metropolis-Hastings Recipe

min

{
1,

e−f(z)

e−f(x)

P (z → x)

P (x → z)

}

z ∼ P(x, ·)

π(x) ∝ e−f(x)

Also called ``Metropolis-Hastings step/correction’’.



• Typical two step design for 


• Proposal step: 
 

• Accept-reject step: Accept z with probability 
 
 

Our work

min

{
1,

e−f(z)

e−f(x)

P (z → x)

P (x → z)

}

z ∼ P(x, ·)

π(x) ∝ e−f(x)

How to select 
the proposal 
distribution?

Should I do this 
step or not?



Outline

• Power of accept-reject (Langevin algorithms)


• Power of gradients for sampling



Algorithm Proposal Step 

Random Walk

Langevin algorithm

Hamiltonian Monte Carlo Multi step version of Langevin algorithm

z = x+
√
2hξ

z = x− h∇f(x) +
√
2hξ

Three popular algorithms

ξ ∼ N (0, Id)
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• Find the global minimum (or a 
stationary point)


• Gradient descent: 
 

• Stochastic Gradient Algorithm:

From optimization to sampling

min
x∈Rd

f(x)

xk+1 = xk − h∇f(xk)

Xk+1 = Xk − h∇f(Xk) + hξk+1

13

Optimization



• Find the global minimum (or a 
stationary point)


• Gradient descent: 
 

• Stochastic Gradient Algorithm:

From optimization to sampling

• Draw samples from the density


• Unadjusted Langevin algorithm 
(ULA):

π(x) ∝ e−f(x)

Xk+1 = Xk − h∇f(Xk) +
√
2hξk+1

ξk
i.i.d.∼ N (0, Id×d)

[Parisi 1981, Grenander & Miller 1994, 
Roberts & Tweedie 1996]

min
x∈Rd

f(x)

xk+1 = xk − h∇f(xk)

Xk+1 = Xk − h∇f(Xk) + hξk+1
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Optimization Sampling



• Classical Langevin stochastic differential equation 
 

Langevin algorithms: Origins?

dXt = −∇f(Xt)dt+
√
2dBt where Bt is standard Brownian motion
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• Classical Langevin stochastic differential equation 
 

• It has the right limiting distribution 
 

Langevin algorithms: Origins?

dXt = −∇f(Xt)dt+
√
2dBt where Bt is standard Brownian motion

‖P (Xt)− π‖TV
t↑∞−→ 0

16

π(x) ∝ e−f(x) where f : Rd → R is convex



• Classical Langevin stochastic differential equation 
 

• It has the right limiting distribution 
 

• ULA updates: forward discretization of the Langevin SDE 
 
 
 
(no accept-reject step)

Langevin algorithms: Origins?

dXt = −∇f(Xt)dt+
√
2dBt where Bt is standard Brownian motion

‖P (Xt)− π‖TV
t↑∞−→ 0

Xk+1 −Xk = −h∇f(Xk) +
√
2hξk+1
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π(x) ∝ e−f(x) where f : Rd → R is convex



• Classical Langevin stochastic differential equation 
 

• It has the right limiting distribution 
 

• ULA updates: forward discretization of the Langevin SDE 
 
 
 
(no accept-reject step)

Langevin algorithms: Origins?

dXt = −∇f(Xt)dt+
√
2dBt where Bt is standard Brownian motion

‖P (Xt)− π‖TV
t↑∞−→ 0

Xk+1 −Xk = −h∇f(Xk) +
√
2hξk+1
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π(x) ∝ e−f(x) where f : Rd → R is convex

Effect of  
step size h?



The iterates for one run are diverse
Upon convergence:  
Histogram across multiple runs is 
biased
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ULA performance:  
Large step = large bias + fast mixing



The iterates for one run are highly correlated
Upon convergence:  
Histogram across multiple runs is 
almost unbiased
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ULA performance:  
Small step = small bias + slow mixing



ULA: Step-size and speed/bias tradeoff
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Iteration
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ULA opt

ULA small
L1 distance 

between 

 histograms

target accuracy
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How do we remove the asymptotic bias?

• Via the classical Metropolis-Hastings correction step


• Metropolis adjusted Langevin algorithm (MALA):


1. Use ULA updates as proposals 

2. Accept z with probability 
 

3. In case of rejection, stay at x

z = x− h∇f(x) +
√
2hξ

min

{
1,

e−f(z)

e−f(x)

P (z → x)

P (x → z)

}
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Accept-reject 
makes the chain 
unbiased due to 
detailed balance 

condition



MALA: Fast convergence with no bias

L1 distance 
between 


 histograms
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✴Discrete state  
Markov chains


• Coupling construction


• Conductance method

Proof techniques for convergence of 
Markov Chains

✴Continuous state 
Markov chains


• Coupling construction


• Coupling + Lyapunov

• Coupling + SDE    

• Conductance method



Algorithm ULA 
[Dalalyan 2016]

f  is L-smooth and 
m -strongly-convex

Mixing time bounds:  
Strongly log-concave

d

(
L

m

)2 1

δ2

π(x) ∝ e−f(x)

25

‖P (Xk)− π‖TV ≤ δ



Algorithm ULA 
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[Our work]

f  is L-smooth and 
m -strongly-convex

Mixing time bounds:  
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d

(
L

m

)2 1
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d
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m

)
log

1

δ
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‖P (Xk)− π‖TV ≤ δ



Algorithm ULA 
[Dalalyan 2016]

MALA 
[Our work]

f  is L-smooth and 
m -strongly-convex

Mixing time bounds:  
Strongly log-concave

Mixing time of MALA has 
• exponentially better dependence on accuracy 
• better dependence on conditioning L/m

δ

d

(
L

m

)2 1

δ2
d

(
L

m

)
log

1

δ

π(x) ∝ e−f(x)
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‖P (Xk)− π‖TV ≤ δ



Algorithm ULA 
[Dalalyan 2016]

MALA 
[Our work]

f  is L-smooth and 
m -strongly-convex

f  is convex and 
L-smooth

d

(
L

m

)2 1

δ2
d

(
L

m

)
log

1

δ

Mixing time bounds:  
Strongly and weakly log-concave

d3L2 1

δ4
d2L1.5 1

δ1.5

π(x) ∝ e−f(x)
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‖P (Xk)− π‖TV ≤ δ



Algorithm ULA 
[Dalalyan 2016]

MALA 
[Our work]

f  is L-smooth and 
m -strongly-convex

f  is convex and 
L-smooth

d

(
L

m

)2 1

δ2
d

(
L

m

)
log

1

δ

Mixing time bounds:  
Strongly and weakly log-concave

d3L2 1

δ4
d2L1.5 1

δ1.5

π(x) ∝ e−f(x)

Faster!
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‖P (Xk)− π‖TV ≤ δ



• Both algorithms converge quickly to their stationary 
distributions

The difference between MALA and ULA: 
An informal proof
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• Both algorithms converge quickly to their stationary 
distributions


• ULA has a biased stationary distribution 
 
 
 
 
 

‖P (xk)− π‖TV ≤ ‖P (xk)− πULA‖TV + ‖πULA − π‖TV

Bias

The difference between MALA and ULA: 
An informal proof
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• Both algorithms converge quickly to their stationary 
distributions


• ULA has a biased stationary distribution 
 
 
 
 
 

‖P (xk)− π‖TV ≤ ‖P (xk)− πULA‖TV + ‖πULA − π‖TV

O(e−kh) O(
√
h)

Bias

The difference between MALA and ULA: 
An informal proof
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• Both algorithms converge quickly to their stationary 
distributions


• ULA has a biased stationary distribution 
 
 
 
 
 

‖P (xk)− π‖TV ≤ ‖P (xk)− πULA‖TV + ‖πULA − π‖TV

O(e−kh) O(
√
h)≤ δ/2 ≤ δ/2

k ≥ O
(
1

h
log

1

δ

)
= O

(
1

δ2

)

Bias

The difference between MALA and ULA: 
An informal proof

33



• Both algorithms converge quickly to their stationary 
distributions


• ULA has a biased stationary distribution 
 
 
 
 
 

• MALA is unbiased: larger step size implies faster mixing

‖P (xk)− π‖TV ≤ ‖P (xk)− πULA‖TV + ‖πULA − π‖TV

O(e−kh) O(
√
h)≤ δ/2 ≤ δ/2

k ≥ O
(
1

h
log

1

δ

)
= O

(
1

δ2

)

Bias

The difference between MALA and ULA: 
An informal proof
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• Both algorithms converge quickly to their stationary 
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Step size limited by 
the rejection rate



Power of gradients

• What if we do not have gradient info?


• What if we take multiple gradient steps for each proposal 
step?
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Algorithm Proposal Step 

Random Walk 
(zeroth order)

Langevin algorithm 
(first order)

Hamiltonian Monte Carlo 
(first-second order)

Multi step version of Langevin 
algorithm

Three popular algorithms

z = x+
√
2hξ

z = x− h∇f(x) +
√
2hξ

ξ ∼ N (0, Id)



Algorithm Mixing time

Metropolized Random Walk 
(MRW)

Metropolis Adjusted 
Langevin Algorithm (MALA)

Metropolized Hamiltonian 
Monte Carlo 

(HMC)

Three popular algorithms
π(x) ∝ e−f(x), mId " ∇2f(x) " LId, κ = L/m
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4



Algorithm Mixing time

Metropolized Random Walk 
(MRW)

Metropolis Adjusted 
Langevin Algorithm (MALA)

Metropolized Hamiltonian 
Monte Carlo 

(HMC)

Three popular algorithms
π(x) ∝ e−f(x), mId " ∇2f(x) " LId, κ = L/m

dκ2

dκ

dκ
3
4

More gradient 
information

Faster



✴Discrete state  
Markov chains


• Coupling construction


• Conductance method

Proof techniques for convergence of 
Markov Chains

✴Continuous state 
Markov chains


• Coupling construction


• Conductance method



Langevin algorithms: Prior work

Type of results Existing Literature Techniques

Asymptotic 
convergence

[Talay & Tubaro ‘90], 
[Meyn & Tweedie ‘95],  

[Roberts & Rosenthal ‘96, ‘01, 
‘02]

Lyapunov 
arguments

First non-asymptotic 
results

[Bou-Rabee & Hairer ‘09],  
[Roberts & Rosenthal ‘14], 

[Eberle ‘14]

Coupling  
+ Lyapunov 
arguments

Explicit non-asymptotic 
bounds

[Dalalyan ‘15, ‘17],  
[Durmus & Moulines ‘15, ‘16],   

[Cheng & Bartlett ‘17]

Coupling  
+ SDE errors
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Langevin algorithms:  
Non-asymptotic bounds
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Conductance 
method



Proof Outline

Tx Ty

x y

Transition distributions
ρ

∆

Isoperimetry  
+ 

Conductance bounds for 
spectral gap

spectral gap ≥ 1− ρ2∆2

2

‖P (xk)− π‖TV ≤ δ for k ≥ O
(
log(1/δ)

∆2ρ2

)

44



Proof Outline

Tx

Transition distributions
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Tx Ty

x y
∆

‖Tx − Ty‖TV ≤ 1
2 whenever d(x, y) ≤ ∆

ρ =
1

2

‖Tx − Ty‖TV ≤ ‖Tx − Px‖TV + ‖Ty − Py‖TV

+ ‖Px − Py‖TV



Proof Outline

Tx

Transition distributions
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Tx Ty

x y
∆

‖Tx − Ty‖TV ≤ ‖Tx − Px‖TV + ‖Ty − Py‖TV

+ ‖Px − Py‖TV

ρ =
1

2

Difference in proposal 
distributions at two points

Difference in proposal and 
transition distribution due to 

accept-reject step



Power of accept-reject

Convex 
Optimization

Log-concave 
Sampling

Stochastic 
Gradient 
Algorithm

+ noise  
variance   h2

Gradient Descent Unadjusted 
Langevin Algorithm

Metropolis-Adjusted 
Langevin Algorithm

+ noise

 

variance h

+ Accept

 

Reject Step

Provides exponential 
gain in mixing time
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Power of gradient information

48

Metropolis-Adjusted 
Langevin Algorithm

Metropolized 
Hamiltonian Monte 

Carlo

Metropolized 
Random Walk

More gradient 
information

Faster

http://people.eecs.berkeley.edu/~raaz.rsk/publications.html

• Log-concave sampling: Metropolis Hastings Algorithms are 

fast

• Fast Mixing of Metropolized Hamiltonian Monte Carlo: 

Benefits of Multi-Step Gradients 


http://people.eecs.berkeley.edu/~raaz.rsk/publications.html

