

Theoretical insights for MCMC algorithms

Raaz Dwivedi, UC Berkeley

Talk at BIDS Statistics and Machine Learning Discussion Group, Mar 18

Yuansi Chen

Joint work with

Martin Wainwright

Bin Yu

Random Sampling

 We consider the problem of drawing random samples from a given density (known up-to proportionality)

$$X_1, X_2, \ldots, X_m \sim \pi$$

Sampling: A fundamental task

4

Popular recipes for sampling

- Rejection sampling
- Gibbs sampling
- Markov Chain Monte Carlo (MCMC) methods

Popular recipes for sampling

- Rejection sampling
- Gibbs sampling

Requires tractable conditional distributions

Markov Chain Monte Carlo (MCMC) methods

Require knowledge of density up to proportionality

MCMC 101

- Design of Markov Chain
 - Starting point: random or deterministic
 - Transition distribution: given a point, how to make a transition
 - Target distribution
- Mixing Time
 - Number of steps steps after which the distribution of the chain is close to the target distribution

MCMC 102: Metropolis-Hastings Recipe

Typical two step design for

$$\pi(x) \propto e^{-f(x)}$$

• Proposal step:

$$z \sim \mathbb{P}(x, \cdot)$$

• Accept-reject step: Accept z with probability

$$\min\left\{1, \frac{e^{-f(z)}}{e^{-f(x)}} \frac{P(z \to x)}{P(x \to z)}\right\}$$

Also called "Metropolis-Hastings step/correction".

Our work

• Typical two step design for

$$\pi(x) \propto e^{-f(x)}$$

• Proposal step:

$$z \sim \mathbb{P}(x, \cdot)$$

How to select the proposal distribution?

• Accept-reject step: Accept z with probability

$$\min\left\{1, \frac{e^{-f(z)}}{e^{-f(x)}} \frac{P(z \to x)}{P(x \to z)}\right\}$$

Should I do this step or not?

Outline

- Power of accept-reject (Langevin algorithms)
- Power of gradients for sampling

 $\xi \sim \mathcal{N}(0, \mathbb{I}_d)$

From optimization to sampling

• Find the global minimum (or a stationary point)

 $\min_{x \in \mathbb{R}^d} f(x)$

• Gradient descent:

 $x_{k+1} = x_k - h\nabla f(x_k)$

• Stochastic Gradient Algorithm:

 $X_{k+1} = X_k - h\nabla f(X_k) + \frac{h\xi_{k+1}}{2}$

From optimization to sampling

• Find the global minimum (or a stationary point)

 $\min_{x \in \mathbb{R}^d} f(x)$

• Gradient descent:

 $x_{k+1} = x_k - h\nabla f(x_k)$

• Stochastic Gradient Algorithm:

 $X_{k+1} = X_k - h\nabla f(X_k) + \frac{h\xi_{k+1}}{h\xi_{k+1}}$

• Draw samples from the density

$$\pi(x) \propto e^{-f(x)}$$

 Unadjusted Langevin algorithm (ULA):

$$X_{k+1} = X_k - h\nabla f(X_k) + \sqrt{2h}\xi_{k+1}$$
$$\xi_k \stackrel{i.i.d.}{\sim} \mathcal{N}(0, I_{d \times d})$$

[Parisi 1981, Grenander & Miller 1994, Roberts & Tweedie 1996]

Classical Langevin stochastic differential equation

 $dX_t = -\nabla f(X_t)dt + \sqrt{2}dB_t$ where B_t is standard Brownian motion

Classical Langevin stochastic differential equation

 $dX_t = -\nabla f(X_t)dt + \sqrt{2}dB_t$ where B_t is standard Brownian motion

• It has the right limiting distribution $\pi(x) \propto e^{-f(x)}$

 $||P(X_t) - \pi||_{\mathrm{TV}} \xrightarrow{t \uparrow \infty} 0$

Classical Langevin stochastic differential equation

 $dX_t = -\nabla f(X_t)dt + \sqrt{2}dB_t$ where B_t is standard Brownian motion

• It has the right limiting distribution $\pi(x) \propto e^{-f(x)}$

$$||P(X_t) - \pi||_{\mathrm{TV}} \xrightarrow{t \uparrow \infty} 0$$

• ULA updates: forward discretization of the Langevin SDE

$$X_{k+1} - X_k = -h\nabla f(X_k) + \sqrt{2h}\xi_{k+1}$$

(no accept-reject step)

Classical Langevin stochastic differential equation

 $dX_t = -\nabla f(X_t)dt + \sqrt{2}dB_t$ where B_t is standard Brownian motion

• It has the right limiting distribution $\pi(x) \propto e^{-f(x)}$

$$\|P(X_t) - \pi\|_{\mathrm{TV}} \xrightarrow{t \uparrow \infty} 0$$

• ULA updates: forward discretization of the Langevin SDE

$$X_{k+1} - X_k = -h\nabla f(X_k) + \sqrt{2h}\xi_{k+1}$$

(no accept-reject step)

ULA performance: Large step = large bias + fast mixing

Histogram across multiple runs is biased

The iterates for one run are diverse

ULA performance: Small step = small bias + slow mixing

Upon convergence: Histogram across multiple runs is *almost* unbiased

The iterates for one run are highly correlated

ULA: Step-size and speed/bias tradeoff

How do we remove the asymptotic bias?

- Via the **classical** Metropolis-Hastings correction step
- Metropolis adjusted Langevin algorithm (MALA):
 - 1. Use ULA updates as proposals

$$z = x - h\nabla f(x) + \sqrt{2h}\xi$$

2. Accept z with probability

$$\min\left\{1, \frac{e^{-f(z)}}{e^{-f(x)}} \frac{P(z \to x)}{P(x \to z)}\right\}$$

3. In case of rejection, stay at x

Accept-reject makes the chain unbiased due to detailed balance condition

MALA: Fast convergence with no bias

Proof techniques for convergence of Markov Chains

*Discrete state Markov chains *Continuous state Markov chains

Coupling construction

- Coupling construction
 - Coupling + Lyapunov
 - Coupling + SDE

Conductance method

Conductance method

Mixing time bounds: Strongly log-concave

$$\|P(X_k) - \pi\|_{\mathrm{TV}} \le \delta$$

Algorithm	ULA [Dalalyan 2016]	
f is L-smooth and m -strongly-convex	$d\left(\frac{L}{m}\right)^2\frac{1}{\delta^2}$	
	25	

Mixing time bounds: Strongly log-concave

 $\|P(X_k) - \pi\|_{\mathrm{TV}} \le \delta$

Algorithm	ULA [Dalalyan 2016]	MALA [Our work]
f is L-smooth and m -strongly-convex	$d\left(\frac{L}{m}\right)^2\frac{1}{\delta^2}$	$d\left(\frac{L}{m}\right)\log\frac{1}{\delta}$
	26	

Mixing time bounds: Strongly log-concave

 $\|P(X_k) - \pi\|_{\mathrm{TV}} \le \delta$

Algorithm	ULA [Dalalyan 2016]	MALA [Our work]
f is L-smooth and m -strongly-convex	$d\left(\frac{L}{m}\right)^2\frac{1}{\delta^2}$	$d\left(\frac{L}{m}\right)\log\frac{1}{\delta}$
	Mixing time of MALA has • exponentially better dependence on accuracy δ • better dependence on conditioning L/m	

Mixing time bounds: Strongly and weakly log-concave

 $\|P(X_k) - \pi\|_{\mathrm{TV}} \le \delta$

Algorithm	ULA [Dalalyan 2016]	MALA [Our work]
f is L-smooth and m -strongly-convex	$d\left(\frac{L}{m}\right)^2\frac{1}{\delta^2}$	$d\left(\frac{L}{m}\right)\log\frac{1}{\delta}$
f is convex and L-smooth	$d^3L^2\frac{1}{\delta^4}$	$d^2L^{1.5}\frac{1}{\delta^{1.5}}$

Mixing time bounds: Strongly and weakly log-concave

 $\|P(X_k) - \pi\|_{\mathrm{TV}} \le \delta$

Algorithm	ULA [Dalalyan 2016]	MALA [Our work]
f is L-smooth and m -strongly-convex	$d\left(\frac{L}{m}\right)^2\frac{1}{\delta^2}$	$d\left(\frac{L}{m}\right)\log\frac{1}{\delta}$
f is convex and L-smooth	$d^3L^2\frac{1}{\delta^4}$	$d^2L^{1.5}\frac{1}{\delta^{1.5}}$

 Both algorithms converge quickly to their stationary distributions

- Both algorithms converge quickly to their stationary distributions
- ULA has a biased stationary distribution

$$\|P(x_k) - \pi\|_{\rm TV} \le \|P(x_k) - \pi_{\rm ULA}\|_{\rm TV} + \|\pi_{\rm ULA} - \pi\|_{\rm TV}$$

- Both algorithms converge quickly to their stationary distributions
- ULA has a biased stationary distribution

$$\|P(x_k) - \pi\|_{\mathrm{TV}} \le \|P(x_k) - \pi_{\mathrm{ULA}}\|_{\mathrm{TV}} + \|\pi_{\mathrm{ULA}} - \pi\|_{\mathrm{TV}}$$
$$\mathcal{O}(e^{-kh}) \qquad \qquad \mathcal{O}(\sqrt{h})$$

- Both algorithms converge quickly to their stationary distributions
- ULA has a biased stationary distribution

$$\|P(x_k) - \pi\|_{\mathrm{TV}} \leq \|P(x_k) - \pi_{\mathrm{ULA}}\|_{\mathrm{TV}} + \|\pi_{\mathrm{ULA}} - \pi\|_{\mathrm{TV}}$$
$$\mathcal{O}(e^{-kh}) \leq \delta/2 \qquad \mathcal{O}(\sqrt{h}) \leq \delta/2$$
$$k \geq \mathcal{O}\left(\frac{1}{h}\log\frac{1}{\delta}\right) = \mathcal{O}\left(\frac{1}{\delta^2}\right)$$

- Both algorithms converge quickly to their stationary distributions
- ULA has a biased stationary distribution

$$\begin{aligned} \|P(x_k) - \pi\|_{\mathrm{TV}} &\leq \|P(x_k) - \pi_{\mathrm{ULA}}\|_{\mathrm{TV}} + \|\pi_{\mathrm{ULA}} - \pi\|_{\mathrm{TV}} \\ \mathcal{O}(e^{-kh}) &\leq \delta/2 \qquad \mathcal{O}(\sqrt{h}) \leq \delta/2 \\ k &\geq \mathcal{O}\left(\frac{1}{h}\log\frac{1}{\delta}\right) = \mathcal{O}\left(\frac{1}{\delta^2}\right) \end{aligned}$$

Bias

MALA is unbiased: larger step size implies faster mixing

- Both algorithms converge quickly to their stationary distributions
- ULA has a biased stationary distribution

$$\|P(x_k) - \pi\|_{\mathrm{TV}} \le \|P(x_k) - \pi_{\mathrm{ULA}}\|_{\mathrm{TV}} + \|\pi_{\mathrm{ULA}} - \pi\|_{\mathrm{TV}}$$
$$\mathcal{O}(e^{-kh}) \le \delta/2 \qquad \mathcal{O}(\sqrt{h}) \le \delta/2$$
$$k \ge \mathcal{O}\left(\frac{1}{h}\log\frac{1}{\delta}\right) = \mathcal{O}\left(\frac{1}{\delta^2}\right)$$

MALA is unbiased: larger step size implies faster mixing

Step size limited by the rejection rate

Power of gradients

- What if we do not have gradient info?
- What if we take multiple gradient steps for each proposal step?

Algorithm	Proposal Step
Random Walk (zeroth order)	$z = x + \sqrt{2h}\xi$
Langevin algorithm (first order)	$z = x - h\nabla f(x) + \sqrt{2h}\xi$
Hamiltonian Monte Carlo (first-second order)	Multi step version of Langevin algorithm

$\pi(x) \propto e^{-f(x)}, m\mathbb{I}_d \preceq$	$ \langle \nabla^2 f(x) \preceq L \mathbb{I}_d, \kappa = L/m $
Algorithm	Mixing time
Metropolized Random Walk (MRW)	
Metropolis Adjusted Langevin Algorithm (MALA)	
Metropolized Hamiltonian Monte Carlo (HMC)	

More gradient information

Proof techniques for convergence of Markov Chains

*Discrete state Markov chains *Continuous state Markov chains

Coupling construction

Coupling construction

Conductance method

Conductance method

Langevin algorithms: Prior work

Type of results	Existing Literature	Techniques
Asymptotic convergence	[Talay & Tubaro '90], [Meyn & Tweedie '95], [Roberts & Rosenthal '96, '01, '02]	Lyapunov arguments
First non-asymptotic results	[Bou-Rabee & Hairer '09], [Roberts & Rosenthal '14], [Eberle '14]	Coupling + Lyapunov arguments
Explicit non-asymptotic bounds	[Dalalyan '15, '17], [Durmus & Moulines '15, '16], [Cheng & Bartlett '17]	Coupling + SDE errors

Langevin algorithms: Non-asymptotic bounds

Conductance method

Proof Outline

$\|\mathcal{T}_x - \mathcal{T}_y\|_{\mathrm{TV}} \le \frac{1}{2}$ whenever $d(x, y) \le \Delta$

$$\begin{aligned} \|\mathcal{T}_x - \mathcal{T}_y\|_{\mathrm{TV}} &\leq \|\mathcal{T}_x - \mathcal{P}_x\|_{\mathrm{TV}} + \|\mathcal{T}_y - \mathcal{P}_y\|_{\mathrm{TV}} \\ &+ \|\mathcal{P}_x - \mathcal{P}_y\|_{\mathrm{TV}} \end{aligned}$$

Power of accept-reject

Power of gradient information

- Log-concave sampling: Metropolis Hastings Algorithms are fast
- Fast Mixing of Metropolized Hamiltonian Monte Carlo: ₄₈Benefits of Multi-Step Gradients