
Standard Thinning: Can not thin too much
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  sup
∥f∥≤1

|ℙin f − ℙout f | ≾ m
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Standard thinning guarantee

     sup
∥f∥≤1

|ℙin f − ℙ⋆f | ≾ 1
n

Monte Carlo gaurantee: 
(Input =   iid or fast mixing  

MCMC points)
n

  has to be a constant for not losing   accuracy after thinningm n−1/2
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Kernel Thinning Algorithm

One Halving Round: One point selected 
non-uniformly from each pair of points with 

certain probability based on the kernel 
alignment of the points observed so far 

Kernel Thinning:   points with   errorn n−1/2

Kernel 
Thinning 

(KT)

   sup
∥f∥k≤1

|ℙin f − ℙKT f | ≾d

n−1/2 log n

n−1/2 logd+1 n log log n

(Compactly supported)

(Sub-exponential tails)

  
suitable kernels 

 

x1, x2, …, xn ∈ ℝd

ℙin := 1
n

n

∑
i=1

δxi

•Significantly superior to   rates from Standard-  Thinning  
•In fact, the rates are nearly minimax optimal !!
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Non-uniform sample of size    
  

 

n
y1, …, y n

ℙKT := 1
n

n

∑
i=1

δyi

In
te

gr
at

io
n 

Er
ro

r (
ke

rn
el

 M
M

D
)

Mixture of Gaussian Data

IID Data

Motivation: MCMC Thinning

• Markov Chain Monte Carlo (MCMC): Workhorse for approximating 
intractable expectations with asymptotically exact averages 
 

     for  ’s from Markov Chain 

• Samples thinned to minimize computation for downstream function 
evaluations—-but the integration error worsens with fewer samples

ℙ⋆f := ∫ f(x)dℙ⋆(x) ≈ 1
n

n

∑
i=1

f(xi) =: ℙn f xi
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How can we provably and practically compress 
much more while keeping good accuracy?

Via Kernel Thinning!

MCMC Data

d=4
d=38

• Significantly superior to   rates from Standard-  Thinning  
• In fact, nearly minimax integration error in many settings 
• Quasi Monte Carlo like guarantees, but KT guarantees apply 

to non-uniform targets with unbounded support 
• Only kernel evaluations required to implement the algorithm

n−1/4 n


