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 ≈ min{ | ̂ui − ui | , |vt − ̂vt |}
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Double robustness, double machine learning… 
[… Cassel+ ’77, Robinson ’88, Särndal+ ’89, Robins+ ’94, ’95, ’08, ’09, Newey+ ’94, ’18, Bickel+ ’98,  van der 
Laan+ ’03, Lunceford+ ’04, Davidian+ ’05, Li+ ’11, Jiang+ ’15,  Chernozhukov+ ’18, Hirshberg+ ’18, Diaz ’19, 

Arkhangelsky+ ’21, Dorn+ ’21 …]

                 DR-NN error    user-NN error  time-NN error 
                                             min{user-NN error,  time-NN error}

≈ ×
≾

Doubly robust to heterogeneity in user factors & time factors
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(N = T = 128, 1 Trial )

DR-NN error  min { user-NN error, time-NN error }≪

2−3

2−4

A baseline 
algorithm from 
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✓Inference in sequential experiments: User-NN with  errorÕ(T−1/4)

✓Efficient estimators: Doubly robust-NN with  error Õ(T−1/2)
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✦Future: Settings with contexts and covariates
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Cardiology

Aerospace

Self-driving

Basic unit Sub-component System

Human-robot 
interaction

Plant 
design

Built environment 
(city planning)

…
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Part 2 overview: Computationally-efficient integration 
for high-dimensional models
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Carlo integration (mean, variance,..)

  ℙ⋆f ≜ ∫ f(X)dℙ⋆(X) ≈ 1
T

T

∑
i=1

f(Xi)

• Single  simulation~ 4 CPU weeksf

• Time to compute sample mean 
~ 4 Million CPU weeks

• How to make integration 
computationally feasible?

?? This talk
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Compress

 IID or MCMC pointsT

  ℙT f ≜ ΣT
i=1 f(Xi)

T

X1, …, XT

 output points (coreset)s

X′ 1, …, X′ s

  ℙout f ≜ Σs
i=1 f(X′ i)

s
 (fewer) function evaluationss

|ℙ⋆f − ℙout f | = Θ(s−1/2)

|ℙ⋆f − ℙout f | = Θ(T−1/4)
when s = T1/2

or iid thinning/ 
uniform sub-sampling

Standard thinning

|ℙ⋆f − ℙT f | = Θ(T−1/2)

a million  a thousand→

Efficient integration via distribution compression

(take every -th point)T/s
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 minimax lower boundΩ(T−1/2)

•If output =  pointsT1/2

•If input =  IID points (any estimator)T

[Tolstikhin+ ’17, Philips+ ’20]
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a million  a thousand→  output pointsT1/2 IID or MCMC pointsT

Prior strategies for efficient integration
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|ℙ⋆f − ℙT f | = Θ(T−1/2)
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a million  a thousand→  output pointsT1/2 IID or MCMC pointsT

Prior strategies for efficient integration

•  error guarantee: 
Quasi Monte Carlo, Bayesian quadrature, 
determinantal point processes, Haar thinning 
[O’Hagan ’91, Hickernell ’98, Novak+’10, Liu+ ’18, 
Karvonen+’18,  Dwivedi+’19, Belhadji+ ’20] 

o(T−1/4)

 minimax lower boundΩ(T−1/2)
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-Uniform on  
-Bounded support & 
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a million  a thousand→  output pointsT1/2 IID or MCMC pointsT

Prior strategies for efficient integration

•  error guarantee: 
Quasi Monte Carlo, Bayesian quadrature, 
determinantal point processes, Haar thinning 
[O’Hagan ’91, Hickernell ’98, Novak+’10, Liu+ ’18, 
Karvonen+’18,  Dwivedi+’19, Belhadji+ ’20] 

o(T−1/4)

•  error guarantee:  
Kernel herding, greedy sign selection, Stein 
points MCMC, support points, supersampling 
[Chen+ ’10, Lacoste+ ’15, Paige+ ’16, Tolstikhin+ ’17, 
Mak+ ’18, Chen ’19, Karnin ’19]

Õ(T−1/4)

 minimax lower boundΩ(T−1/2)

Special  
-Uniform on  
-Bounded support & 

special function class

ℙ⋆

[0,1]d

Generic  & rich 
function class

ℙ⋆

|ℙ⋆f − ℙT f | = Θ(T−1/2)
Standard thinning

|ℙ⋆f − ℙout f | = Θ(T−1/4)



27

 output pointsT1/2 IID or MCMC pointsT

|ℙ⋆f − ℙT f | = Θ(T−1/2)
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     |ℙ⋆f − ℙout f | = Õ(T−1/2)

➡ for generic   on generic domainsℙ⋆

➡ for rich function classes

27

 output pointsT1/2 IID or MCMC pointsT

A new practical & provably near-optimal procedure

Kernel thinning

Dwivedi and Mackey ’21, ‘22

|ℙ⋆f − ℙT f | = Θ(T−1/2)
Standard thinning

|ℙ⋆f − ℙout f | = Θ(T−1/4)

 minimax lower boundΩ(T−1/2)

a million  a thousand→
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Namely, over the unit ball of a reproducing kernel Hilbert space (RKHS) 
 
                                                sup

∥f∥k≤1
|ℙ⋆f − ℙout f |

• Parameterized by a reproducing kernel  
any symmetric ( ) and positive semidefinite function

k
k(x, y) = k(y, x)

• Metrizes convergence in distribution for popular infinite-dimensional k

Quantitative measure: Worst-case error over a rich class

29

Gaussian Matérn Bspline Inverse multiquadric 

sup
∥f∥k≤1

|ℙ⋆f − ℙout f |
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Main result: A high probability bound for generic  and ℙ⋆ k
Informal theorem: [Dwivedi and Mackey’21, ’22 and Dwivedi-Shetty-Mackey ’22] 

Kernel thinning uses  kernel evaluations to output  points, that with 
high probability satisfy 

O(T log3 T) T1/2

•     for a fixed  in the RKHS of  (any kernel) 

     when  

|ℙ⋆f − ℙout f | ≾ log T
T

⋅∥f∥k ∥k∥∞ f k
|ℙ⋆f − ℙT f |≾ T−1/2

•        Sub-gaussian  and  on  (Gaussian) 

                                            Sub-exponential  and  on  (Matérn)

sup
∥f∥k≤1

|ℙ⋆f − ℙout f | ≾ logd/2+1 T
T

ℙ⋆ k ℝd

≾ logd+1 T
T

ℙ⋆ k ℝd

•A near-quadratic gain over  standard thinning errorT−1/4

•Matches minimax lower bounds  up to log factorsT−1/2
30
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Standard thinning Kernel thinning

Discrepancy minimization  
[… Spencer ’77, Banaszczyk ’98, ’12, Eldan+ ’18, … 

Bansal+ ’16, ’18, ’19, ’20, Dwivedi+ ’19, Alweiss+ ’21, …]
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d = 100
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KT on MCMC points for  in         experiments ℙ⋆ (d = 38)

Standard thinning does well but KT provides further improvement 
& offers 50% computational savings (each point ~ 4 CPU weeks)

[ MCMC data from Riabiz-Chen-Cockayne-Swietach-Niederer-Mackey-Oates ’21]†
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Cardiology 4
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Kernel thinning: Near-optimal compression in near-linear time

pip install goodpoints

35

Thin 100k points in 100 dimensions in 10mins



Uncertainty 
propagation

Sequential 
experiments

Data Model

talk summary

Energy

36



Uncertainty 
propagation

Sequential 
experiments

Data Model

talk summary

Energy

36

Personalized decision-making



Uncertainty 
propagation

Sequential 
experiments

Data Model

talk summary From HeartSteps

Energy

)) ))

36

Personalized inference by 
averaging neighborhoods

Personalized decision-making



Uncertainty 
propagation

Sequential 
experiments

Data Model

talk summary From HeartSteps

Energy

to HeartBeats

)) ))

36

Personalized inference by 
averaging neighborhoods

Personalized simulations by 
thinning neighborhoods

Personalized decision-making



Uncertainty 
propagation

Sequential 
experiments

Data Model

talk summary From HeartSteps

Energy

to HeartBeats

)) ))

36

Quadratic gains via  
double robustness

Personalized inference by 
averaging neighborhoods

Personalized simulations by 
thinning neighborhoods

Personalized decision-making



Uncertainty 
propagation

Sequential 
experiments

Data Model

talk summary From HeartSteps

Energy

to HeartBeats

)) ))

36

Quadratic gains via  
double robustness

Personalized inference by 
averaging neighborhoods

Quadratic gains via 
discrepancy minimization

Personalized simulations by 
thinning neighborhoods

Personalized decision-making



Uncertainty 
propagation

Sequential 
experiments

Data Model

talk summary From HeartSteps

Energy

to HeartBeats

)) ))

36

Quadratic gains via  
double robustness

Personalized inference by 
averaging neighborhoods

Quadratic gains via 
discrepancy minimization

Personalized simulations by 
thinning neighborhoods

Personalized decision-making



Uncertainty 
propagation

Sequential 
experiments

Data Model

talk summary From HeartSteps

Energy

to HeartBeats

)) ))

36

Quadratic gains via  
double robustness

Personalized inference by 
averaging neighborhoods

Quadratic gains via 
discrepancy minimization

Personalized simulations by 
thinning neighborhoods

Personalized decision-making



Data Model

Sequential 
experiments

Uncertainty 
propagation

37



Data Model

Sequential 
experiments

Data and computation efficient methods  
for personalized decision-making

Uncertainty 
propagation

research overview37



Deep dive into personalization by a 
reinforcement learning algorithm

Dwivedi*-Zhang*-Chhabria-Klasnja-
Murphy ‘23

Data Model

Sequential 
experiments

Data and computation efficient methods  
for personalized decision-making

Uncertainty 
propagation

research overview37



Deep dive into personalization by a 
reinforcement learning algorithm

Dwivedi*-Zhang*-Chhabria-Klasnja-
Murphy ‘23

Sequential 
experiments

Data Model
Data and computation efficient methods  

for personalized decision-making

Dwivedi*-Tan*-Park-Wei-Horgan-Madigan-Yu ‘20

Stable discovery of interpretable subgroups in 
randomized studies via calibration

Randomized 
experiments

Uncertainty 
propagation

research overview37



Deep dive into personalization by a 
reinforcement learning algorithm

Dwivedi*-Zhang*-Chhabria-Klasnja-
Murphy ‘23

Observational 
studies

On counterfactual inference with unobserved 
confounding via exponential family

Shah-Dwivedi-Shah-Wornell ‘22

Sequential 
experiments

Data Model

Randomized 
experiments

Data and computation efficient methods  
for personalized decision-making

Dwivedi*-Tan*-Park-Wei-Horgan-Madigan-Yu ‘20

Stable discovery of interpretable subgroups in 
randomized studies via calibration

Uncertainty 
propagation

research overview37



Deep dive into personalization by a 
reinforcement learning algorithm

Dwivedi*-Zhang*-Chhabria-Klasnja-
Murphy ‘23

 
Shetty-Dwivedi-Mackey ’22, 

Domingo Enrich-Dwivedi-Mackey ’23

Fast and powerful kernel testing 
via distribution compression

Observational 
studies

On counterfactual inference with unobserved 
confounding via exponential family

Shah-Dwivedi-Shah-Wornell ‘22

Sequential 
experiments

Data Model

Randomized 
experiments

Data and computation efficient methods  
for personalized decision-making

Dwivedi*-Tan*-Park-Wei-Horgan-Madigan-Yu ‘20

Stable discovery of interpretable subgroups in 
randomized studies via calibration

Uncertainty 
propagation

research overview37



Deep dive into personalization by a 
reinforcement learning algorithm

Dwivedi*-Zhang*-Chhabria-Klasnja-
Murphy ‘23

Uncertainty 
quantification

Mixing time guarantees for MCMC 
algorithms in high dimensions

Chen*-Dwivedi*-Wainwright-Yu ’18, ’19, ‘20

 
Shetty-Dwivedi-Mackey ’22, 

Domingo Enrich-Dwivedi-Mackey ’22

Fast and powerful kernel testing 
via distribution compression

Observational 
studies

On counterfactual inference with unobserved 
confounding via exponential family

Shah-Dwivedi-Shah-Wornell ‘22

Sequential 
experiments

Data Model

Randomized 
experiments

Data and computation efficient methods  
for personalized decision-making

Dwivedi*-Tan*-Park-Wei-Horgan-Madigan-Yu ‘20

Stable discovery of interpretable subgroups in 
randomized studies via calibration

Uncertainty 
propagation

research overview37



Statistical-computational tradeoffs 
for optimization algorithms

Dwivedi*-Ho*-Khamaru*-Wainwright-Jordan-Yu 
’19, ’20, ’21, ’22+

Deep dive into personalization by a 
reinforcement learning algorithm

Dwivedi*-Zhang*-Chhabria-Klasnja-
Murphy ‘23

Uncertainty 
quantification

Mixing time guarantees for MCMC 
algorithms in high dimensions

Chen*-Dwivedi*-Wainwright-Yu ’18, ’19, ‘20

Optimization

 
Shetty-Dwivedi-Mackey ’22, 

Domingo Enrich-Dwivedi-Mackey ’22

Fast and powerful kernel testing 
via distribution compression

Observational 
studies

On counterfactual inference with unobserved 
confounding via exponential family

Shah-Dwivedi-Shah-Wornell ‘22

Sequential 
experiments

Data Model

Randomized 
experiments

Data and computation efficient methods  
for personalized decision-making

Dwivedi*-Tan*-Park-Wei-Horgan-Madigan-Yu ‘20

Stable discovery of interpretable subgroups in 
randomized studies via calibration

Uncertainty 
propagation

research overview37



Statistical-computational tradeoffs 
for optimization algorithms

Dwivedi*-Ho*-Khamaru*-Wainwright-Jordan-Yu 
’19, ’20, ’21, ’22+

Deep dive into personalization by a 
reinforcement learning algorithm

Dwivedi*-Zhang*-Chhabria-Klasnja-
Murphy ‘23

Uncertainty 
quantification

Mixing time guarantees for MCMC 
algorithms in high dimensions

Chen*-Dwivedi*-Wainwright-Yu ’18, ’19, ‘20

Optimization

 
Shetty-Dwivedi-Mackey ’22, 

Domingo Enrich-Dwivedi-Mackey ’22

Fast and powerful kernel testing 
via distribution compression

Observational 
studies

On counterfactual inference with unobserved 
confounding via exponential family

Shah-Dwivedi-Shah-Wornell ‘22

Sequential 
experiments

Data Model

Randomized 
experiments

Data and computation efficient methods  
for personalized decision-making

Dwivedi*-Tan*-Park-Wei-Horgan-Madigan-Yu ‘20

Stable discovery of interpretable subgroups in 
randomized studies via calibration

Uncertainty 
propagation

research overview37



Data Model

Observational 
studies

Randomized 
experiments

Sequential 
experiments

OptimizationUncertainty 
propagation Uncertainty 

quantification

38



Data Model

Observational 
studies

Randomized 
experiments

Sequential 
experiments

OptimizationUncertainty 
propagation

- leverage multiple data sources
- design algorithms for multiple objectives
- build fast simulation systems 

going forward…

Thank you!
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Propensity-adjusted user nearest neighbors estimator for θ(a)
i,t

40

 + noiseYi,t = θ (Ai,t)
i,t i,t

Distance between two users  and  under treatment   squared distance 
between their outcomes averaged over all times when both treated with  

       

Estimate = Averaged outcome across user neighbors treated with  at time  

                         

i j a =
a

⟶
∑T

t′ =1 (Yi,t′ 
−Yj,t′ 

)2 ⋅
1(Ai,t′ = Aj,t′ = a)

ℙ(1(Ai,t′ = Aj,t′ = a) |ℱt′ )
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Allows non-iid time factors 
albeit with worse variance



     

•     

             for some  

       

•  

εi ={+1 w.p. 0.5(1 − ψi−1vi/a)
−1 w.p. 0.5(1 + ψi−1vi/a)

σ2
T = Var(ΣT−1

i=1 εivi) + Var(εTvT) −2=[ψ2
T−1v2

T /a]

≤ β σ2
T−1+ v2

T β<1†

≤ a/(1−β) ≤ log T

|ΣT
i=1εivi | = O(σT) = O( log T)

     

•  

          

          

•

εi ={+1 w.p. 0.5
−1 w.p. 0.5

σ2
T ≜ Var(ΣT−1

i=1 εivi + εTvT)

= Var(ΣT−1
i=1 εivi) + Var(εTvT) + 2=[εTψT−1vT]

= σ2
T−1 + v2

T = ΣT
i=1v2

i = O(T)

|ΣT
i=1εivi | = O(σT) = O(T1/2)

0
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        IID signs

ψT−1

=[εiψi−1vi] < 0

Standard thinning Kernel thinningvs

By building on self-balancing walk of Alweiss+ ‘21
41

vs       Correlated signs
is small|ΣT

i=1εivi |



Non-linear double/squared robustness

•  

•  

•  

•   Error  

f(u,0) = f(0,0) + f′ u(0,0)u+ +f′ ′ uu(ũ,0)u2

f(0,v) = f(0,0) + +f′ v(0,0)v + f′ ′ vv(0, ̂v)v2

f(u, v) = f(0,0) + f′ u(0,0)u + f′ v(0,0)v + [u, v]∇2f(ũ, ṽ)[u
v]

f(u,0) + f(0,v) − f(u, v) = f(0,0) + O((u + v)2) ⟹ = max{u2, v2}
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