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How to assign personalized digital Mobile health study:
treatments to help you? Personalized HeartSteps

» Goal: Promote physical activity via mobile app
> Population: 91 hypertension patients, 90 days

> Treatment: Mobile notifications 5 times/day
assigned by a bandit algorithm

» Outcome: 30-min step count after decision time
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More unknowns than (noisy) observations * N iid users
No parametric model available * T (dependent) observations per user
Intricate dependencies due to * If users are not all too different & multiple
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Heterogeneity across users and time

Sequentially adaptive policy
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Estimate counterfactual means {6’1.(?)} fora € {0,1}, all N users & T times

Challenges:
= More unknowns than (noisy) observations
= No parametric model available
= |ntricate dependencies due to
® Heterogeneity across users and time
® Sequentially adaptive policy
® Pooling for policy design

An impossible task without structural
assumptions...

Prior work:
e Average treatment effect
e [ID users & deterministic rules/policies

e |ID users at each time with stochastic
policies

o |ID usertrajectories

e QObservational studies (once treated forever
treated; synthetic control, causal panel data)

.. Abadie+ ‘03,10, Athey+ 17, Arkhangelsky+ 18, Agarwal+ ‘20 ...]
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Y, = 6’.( i) 4 noise.
: it L1

T time factors
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e distributions of unobserved

latent factors and noise @

/ N\
user factor time factor T
(e.g., personal  (e.qg., societal, weather ‘
traits) changes)
No parametric assumptions on N @ te @
user
* unknown non-linearity factors - : .
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User-NN guarantees: Advantages

Challenges tackled: First guarantee
e Asymptotic confidence intervals as N,T — oo: foruser-time-level counterfactuals

~ 1.966 .
@ + v More unknowns than observations
I, useNN .
A /#-nelghborsi ‘0 v Non-parametric model
v/ Heterogeneity across users & time
l Vv’ Generic sequential policies
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Yes, we can!
A near-quadratic improvement over user-NN

Informal theorem: [Dwivedi-Tian-Tomkins-Klasnja-Murphy-Shah '22b]

A suitable variant of nearest neighbors improves* upon the user-NN error

‘ Qii)user NN 6’1(?) ‘ — }/4 T :
'™ \N & &

L
|
]
| HEC;)DR NN ‘91(?)‘ ~ (_ N )

VT YN

*tor Lipschitz non-linearity with Lipschitz gradients & non-adaptive policies
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Steps towards the improved estimator...

® Plug-in principle: |uy,—iu;v,| < |uwy, — v, | + | i;y, — uv,|
— O(Uti—l;\li‘ T ‘Vt_‘/}t‘)

~ max{ | i; — u; |, |v,— V| }

e Convert + to X:  |u.v— @\ = O(|lu; — u;| X |v,—V,|)

%min{‘ﬁi—ui‘,‘vt_‘/}t‘}
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This is our improved nearest neighbors estimator!

%_@ = (u; — i) X (v, — V)
— %6 (— UV — WV, U,
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This is our improved nearest neighbors estimator!
%_ = (u; — ;) X (v, = V)
= b, — Uy, — Uy, + Uy,

=

DR-NN error X’ user-NN error X
<

min{user-NN error, 1
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This is our improved nearest neighbors estimator!

\
|

DR-NN error X’ user-NN error X
<

min{user-NN error, }

Doubly robust to heterogeneity in user factors & time factors
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Simulation results

Uniform latent factors on [—0.5,0.5]%, Gaussian noise, pooled e-greedy policy (e = 0.5)

Variation of error across users (N =T =128, 1 Trial )
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USVT User-NN Time-NN DR-NN
A baseline

algorithm from
[Chatterjee 2014]
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Simulation results

Uniform latent factors on [—0.5,0.5]%, Gaussian noise, pooled e-greedy policy (e = 0.5)

Variation of error across users (N =T =128, 1 Trial )

¢
¢

4

Time-NN

USVT

A baseline

User-NN DR-NN

algorithm from
[Chatterjee 2014]

Decay of avg. error across users (N =T, 20 trials)

t\\ Te——a_2
~
N
YN
.,.\*V
\'gn\...... ‘
4 —p— USVT; T-0:10 ‘x\;"n.,.
- @ -User-NN: T70:2> S o ‘
~
Time-NN: T—9-26 S
. T—0.46 NS
—@=DR-NN: T \‘
2" 2° T 2° 2

DR-NN error << min { user-NN error, time-NN error }
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Personalized HeartSteps results \5:} «D» ﬂ'._.., -

Treatments assigned with Thompson sampling independently for 91 users for 90 days, 5 times a day

4 Variation of error across 20 users at 50 times (test data)

¢

¢

0

>

Error for a

0 L _ !

USVT User-NN Time-NN DR-NN

DR-NN error ~ min { user-NN error, time-NN error }
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Personalized HeartSteps results \5:} «D» ﬂ'...., -

Treatments assigned with Thompson sampling independently for 91 users for 90 days, 5 times a day
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Error for a

4
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Variation of error across 20 users at 50 times (test data) Histogram across 20 users at 50 times for a = O (test data)
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DR-NN error ~ min { user-NN error, time-NN error }
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Part 1 summary:
Sample-efficient inference with non-parametric factor models



Part 1 summary:
Sample-efficient inference with non-parametric factor models

V Inference in sequential experiments: User-NN with O(T %) error

Vv Efficient estimators: Doubly robust-NN with O(T_l/z) error

DR-NN error X~ user-NN error X \l‘ g
< min{user-NN error, } |

4 Future: Settings with contexts and covariates
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1. Use real data to infer decision’s effect
Sequential
experiments

Personalized decision-making

Uncertainty
propagation

2. Use simulated data to predict decision’s effect

i

Mobile health

Part 1. Inference

Part 2. Simulations

Computational
cardiology

Talk overview
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Basic unit Sub-component System

000000

Cardiology

:
OOOOOO




Complex multi-scale simulation systems

Basic unit Sub-component System

Cardiology

Aerospace

Selt-driving
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Complex multi-scale simulation systems

Basic unit Sub-component System

Cardiology

Aerospace

Selt-driving

Human-robot Built environment  Plant
Interaction (city planning) design
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Computational cardiology: Personalized HeartBeats

Cell model Tissue Heart model

G

e Dysreqgulation of calcium signaling in heart cells can cause lethal arrhythmias



https://giphy.com/alperdurmaz

Computational cardiology: Personalized HeartBeats

Cell model Tissue Heart model

&

e Task: Simulate multi-scale digital twin models of heart for personalized
predictions of dysregulation’s effect on a patient’s heartbeat


https://giphy.com/alperdurmaz

Computational cardiology: Personalized HeartBeats

C@H mOde‘ Tissue Heart model

1. Estimate cell-model parameters with uncertainty quantification with single cell
measurements via Bayesian inference and posterior sampling


https://giphy.com/alperdurmaz

Computational cardiology: Personalized HeartBeats

Tissue Heart mode\

2. Propagate cell-model uncertainty to whole-heart model via simulations and
Monte Carlo integration


https://giphy.com/alperdurmaz

Impact of calcium signaling dysregulation on heartbeat—
Two-stage inferential pipeline
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model X
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Impact of calcium signaling dysregulation on heartbeat—
Two-stage inferential pipeline

Cell
model X

Heart
model f

1. Random sampling via MCMC
Xl""’XTN [FD*



Impact of calcium signaling dysregulation on heartbeat—
Two-stage inferential pipeline

Cell Heart
model X model f
1. Random sampling via MCMC 2. Uncertainty propagation via Monte
X, ..., X, ~P* T LT i > Carlo integration (mean, variance,..)

. .* T
(posterior in IR38) *xr A J * ~ l |
P2 | fOOdP*(X) ~ — Z,f(xo

23



Standard tasks but computationally challenging...

Cell
model X

Heart
model f

&

2. Uncertainty propagation via Monte
> Carlo integration

1 T
*xr A * ~ __ ,
P*f = Jf(X)d[FD (X) ~ = i:EI (X))

e 7= 10%to explore P* well



Standard tasks but computationally challenging...

Cell
model X

Heart
model f

&

2. Uncertainty propagation via Monte

> Carlo integration (mean, variance,..)
2

1 T
*xr A * ~ __ ,
P*f = Jf(X)dP (X) ~ = i:EI (X))

® [imetorun MCMC
~ 2 CPU weeks

23



Standard tasks but computationally challenging...

Cell
mode

| X

® [imetorun MCMC
~ 2 CPU weeks

Heart
model f

&

® Single f simulation~ 4 CPU weeks
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Standard tasks but computationally challenging...

Cell ‘ Heart
model X model f
“.1
® Time to run MCMC ® Time to compute sample mean

~ 2 CPU weeks ~ 4 Million CPU weeks

23



Standard tasks but computationally challenging...

Cell
model X

Heart
model f

&

¢ How to make MCMC 0 e How to make integration
computationally faster? computationally feasible?



Part 2 overview: Computationally-efficient integration
for high-dimensional models

Cell
mode

| X

¢ How to make MCMC
computationally faster?

Heart
model f

This talk| ® How to make integration

computationally feasible?

23
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Efficient integration via distribution compression

1 11D or MCMC points output points (coreset)
) ST, € Compress Xis oo X
A ZiT:If (Xz) A Z?:lf (Xi,)
[FDT — T Pautfz s

|P*f—Prfl =0T



Efficient integration via distribution compression

1 11D or MCMC points output points (coreset)
Xioos X7 Compress ) (. ¢
> X > fX
PTfé l—lzjj( l) [FDOul‘fé =1 ( l)
S

Standard thinning
(take every T/s-th point)

|P*f— P, f| =T %) W IP*f =P, f|l =0

uniform sub-sampling [ *f_ [ tf‘ — @(T—1/4)
ou

when s = 772
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111D or MCMC points

*]C_ [

Tf‘ — @(T_l/z) ﬁ

| |

What is the best error we can hope for?

T"? output points

*f_ [

outf‘ — ®(T_1/4)



111D or MCMC points

*]C_ [

Tf‘ — @(T_l/z) ﬁ

T1/2

What is the best error we can hope for?

output points

outf‘ — ®(T_1/4)

[PXf— 1

Q(T—l/Z) m

inimax lower bound

f output = 7% points

finput=T1II

D points (any estimator)



Prior strategies for efficient integration

111D or MCMC points

[PXf— |

Q(T—1/2)

Tf‘ — @(T_l/z) ﬁ

| |

T'? output points

*f_ [

outf‘ — ®(T_1/4)



Prior strategies for efficient integration

111D or MCMC points T'? output points

[P f—Prfl = O(T77) e——p | P*f—P,,f| =0T

Special P* >0 o(T~"*) error guarantee:
~Uniform on [0,1]¢ Quasi Monte Carlo, Bayesian quadrature,
-Bounded support & determinantal point processes, Haar thinning
k special function class

Q(T—l/Z)



Prior strategies for efficient integration

111D or MCMC points T'? output points

|| *]C_L Tf‘ =@(T_1/2) ﬁ

I *f_ L outf‘ — ®(T_1/4)

Generic P* & rich >‘ O(T~*) error guarantee:

function class Kernel herding, greedy sign selection, Stein

points MCMC, support points, supersampling
Q(T—l/Z)



111D or MCMC points

[PXf— |

Q(T—1/2)

Tf‘ — @(T_l/z) ﬁ

| |

T'? output points

*f_ [

outf‘ — ®(T_1/4)



A new practical & provably near-optimal procedure

111D or MCMC points T'? output points

“ *f_L Tf‘ =®(T_1/2) ﬁ

|P*f—P,,.fl =0

= Pyuf ] = O

for generic P*on generic domains

for rich function classes

Q(T—1/2)
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Visual comparison on P* = 8 mixture of Gaussian

64 iid input points 8 output points

Standard thinning

—

Kernel thinning
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Quantitative measure: Worst-case error over a rich class

Namely, over the unit ball of a reproducing kernel Hilbert space (RKHS)

SUp “ *f_L 0utf‘
<1



Quantitative measure: Worst-case error over a rich class

SUp “ *f_L OI/tl‘f‘
<1

® Parameterized by a reproducing kernel k

any symmetric (K(x, y) = K(y, x)) and positive semidefinite function

Gaussian Matérn Bspline Inverse multiquadric

SN N L



Quantitative measure: Worst-case error over a rich class

SUp “ *f_L OI/tl‘f‘
<1

® Metrizes convergence in distribution for popular infinite-dimensional k

Gaussian Matérn Bspline Inverse multiquadric

SN N L
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Main result: A high probability bound for generic P* and k



Main result: A high probability bound for generic P* and k

Informal theorem: [Dwivedi and Mackey'21, '22 and Dwivedi-Shetty-Mackey '22]
Kernel thinning uses O(T log® T) kernel evaluations to output 7"/? points, that with

nigh probability satisty



Main result: A high probability bound for generic P* and k

log
T

T
o |[P*f—P,  f] 5\/ -HfHk\/HkHOO for a fixed fin the RKHS of k (any kernel)

1/4

e A near-quadratic gain over 1~ """ standard thinning error



Main result: A high probability bound for generic P* and k

log?2+1 T
o SUp |PYf=P,  f|] ~ Sub-gaussian P* and k on R (Gaussian)
=1

1o d+1 T
< \/ gT Sub-exponential P* and k on R (Matérn)

1/2

e Matches minimax lower bounds 17 "'“ up to log factors



31



Kernel thinning

points o o functions in RKHS
erne
Xl’XZ”XT v19V29°'°9VT



Kernel thinning = Recursive halving via kernel evaluations
points - functions in RKHS
—» RCHEIN —>
XI’XZ”XT v]avza'“avT

Kernel O(log T') Output
Inp,Ut - erhe - T./2 —» Kernel halving =% P.
I'points ~ halving =~ points ﬁpomts

rounds



Kernel halving

T
21V

I

Kernel
halving

172 . .7
2V

1/2

- Vi, Vs, ..

= small

/
> Vo
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Kernel halving = problem

Assigneg € {—1,1} tov,

such that
Kernel . .
Vis Vo, e s VT = kv - vi, vé, ey V,T/Z & output points with &, =—1
alving
T T/2
21V, 2 v

= small
T T/2




Kernel halving = problem

T 172 ../
2i=1Y; 221V

I 172

= small




Kernel halving = problem

T T/2 . .7
2i=1Y; 221V

I 172

= small




Kernel halving = problem

T 172 ../
2i=1Y; 221V

I 172

= small




Kernel halving = Discrepancy minimization problem
points . _»functionsin RKHS
erne
leXZ’“'vXT V19V29°°°9VT
Assigng; € {—1,1} tov,

such that
& output points with £, =—1

Zgivi Z Vi = Z Vi

Kernel ) /
v1’ Vz, ooo, VT » » V v e o o V
halving o

=1 g==+1 g=—1
o T
D XIEE X

=1

Input Halve output
mean mean

Error
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KT intuition: IID vs correlated signs

e. = x 1 with equal probability

l



KT intuition: IID vs correlated signs

| &v;|is small

Standard thinning
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KT intuition: IID vs correlated signs

| &v;|is small

g; negatively correlated with 2;;%8jvj

Standard thinning
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KT intuition: IID vs correlated signs

| &v;|is small

0% Sﬁa%_1+ V% forf < 1

Standard thinning
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KT intuition: IID vs correlated signs

| &v;|is small

Standard thinning

32



KT intuition: IID vs correlated signs

| &v;|is small

Standard thinning

Kernel thinning

&
|
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KT intuition: IID vs correlated signs

| &v;|is small

\)‘fg
.

Discrepancy minimization
[... Spencer 77, Banaszczyk ‘98, '12, Eldan+ 18, ...
Bansal+ '16,'18,'19, '20, Dwivedi+ ‘19, Alweiss+ ‘21, ...]

Standard thinning

32
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s KT better practically? Gaussian P* in R¢
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Worst-case error to P*

s KT better practically? Gaussian P* in R

d=2 d=4 d=10 d=100
® > % > > ®
. -1 N _ ®e
‘@ > 4 o« > 4~ : > ~1 .
.. > e TR e T : e
0.. 42 >, u ., > Q. >
o B~ ‘e o 42 L > e »
[ I _3 . .o. T ’ ... > > 42 ”.. >
* 11d: T_O'26 .O. 4 * 11d: :T_O’26 'Q’ 4-3 * iid: T—O.25 ”.. * iid: T—().25 ".’ >
b . %T. 7-0.51 o L VT, =04 ‘ _ ) _
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Worst-case error to P*

s KT better practically? Gaussian P* in R?

d=2
|
.’Q. >
* .. ’ ’
00.. ’
.‘,A
¥ -iid: 77920 ‘e
. * KT- T—O.Sl .
‘@
22 24 26 28

d=4
%.. >
0‘.
* ’ ’
. |3
..‘ |
., >
.0
b -id: 7700 e,
4 -KT: 77048 o
00.
22 24 26 28

.0

d=10
:} .
o«
‘0, |
e PNe
b -iid: 77025 e,

- § KT T-042 "..’

d=100
0".
..}
"y
’o.. >

”o.. a -
}-iid: 779% ‘o “p

. § - KT: 77033 e,
0’.
27 24 20 28

Significant gains in d = 100

with just 3 output points



Worst-case error to P

KT on MCMC points for P* in experiments (d = 38)

"Input = 2 MCMC runs on 2 posteriors P*, Gaussian kernel

[TMCMC data from Riabiz-Chen-Cockayne-Swietach-Niederer-Mackey-Oates '21]
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Worst-case error to P

KT on MCMC points for P* in experiments (d = 38)

"Input = 2 MCMC runs on 2 posteriors P*, Gaussian kernel

[TMCMC data from Riabiz-Chen-Cockayne-Swietach-Niederer-Mackey-Oates '21]
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Worst-case error to P

Cardiology 1
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Output size ﬁ
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Cardiology 3
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Output size ﬁ

Standard thinning does well but KT provides further improvement
& offers 50% computational savings (each point ~ 4 CPU weeks)
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Kernel thinning: Near-optimal compression in near-linear time



Kernel thinning: Near-optimal compression in near-linear time

@ python pip install

Thin 100k points in 100 dimensions in 1T0mins
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Deep dive into personalization by a
reinforcement learning algorithm
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Stable discovery of interpretable subgroups in
randomized studies via calibration

Deep dive into personalization by a
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Randomized
experiments

Observational

SELTTELE]

studies experiments

going forward...

gnal to-end pipe/ine

- leverage multiple data sources

Model

28

- design algorithms for multiple objectives

- build fast simulation systems

Uncertainty
propagation

Optimization

Uncertainty
quantification

Thank you!
raazdwivedi.github.io
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Propensity-adjusted user nearest neighbors estimator for 6’1.(?)
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Propensity-adjusted user nearest neighbors estimator for 6’1.(?)

p

. IR D A s e
(@) Zt’zl (Yi,t’_ Yj,t’)2 ‘ I(Ai,t’:Aj,t’: a) =1\t Tyt A = Aj,t/ D15
p Y = —l —
N ZtT’zl I(Ai,t’:Aj,t’za) ZT 1A, =4 =a)

=1 PA=Ay = a)| F))

Allows non-iid time factors

albeit with worse variance




lID signs VS Correlated signs

| &v;|is small

. +1 w.p. 0.5 o +1 w.p. 0.5(1 — yw._,v;/a)
l —1 w.p. 0.5 ’ —1 w.p. 0.5(1 +y,_v./a)
. aT Vau‘(ZlT‘1 gV + €rVr) . GT Var(ZlT‘1 g,v.) + Var(e;vy) —2E [1//T_1VT/ al
= Var(X'ev) + Var(epvy) + 2E ey v7] <po;_+v: forsome <1’
WT— l
=oi  +vi=xl v: =0() Y <al(1-p) <logT

Standard thinning £ Kernel thinning

By building on self-balancing walk of Alweiss+ ‘21




Non-linear double/squared robustness

* fu,0) = f(0,0) +1,(0,0)u+ o (,0)u”

o f(0.V) = f(0.0) + ££,0.0)v + £1,(0.9)V
o fl,v) = 0,00+ [,0.0)u + £,(0.00 + [u, vI Vi, 7)1

e f(u,0)+ f(0,v) — f(u,v) = f(0,0) + O((u + v)*) = Error = max{u?, v*}



Additional results for Personalized Heartsteps
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Additional results for Personalized Heartsteps

c Variation of error across 91 users at 50 (test) times 08
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Additional results for Personalized Heartsteps

3.0 Variation of error across 20 users at 50 times (test data) Histogram across 20 users at 50 times for a = 1 (test data)
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