From HeartSteps to HeartBeats:
 Personalized Decision-making

Personalized Decision-making

Personalized Decision-making

Driven by
extensive data collection,
decreasing cost of computation, synergy between disciplines

Driven by
extensive data collection, decreasing cost of computation, synergy between disciplines

Driven by
extensive data collection, decreasing cost of computation, synergy between disciplines

Medical records

Model
Personalized Decision-making

Driven by
extensive data collection, decreasing cost of computation, synergy between disciplines

Medical records

Driven by
extensive data collection, decreasing cost of computation, synergy between disciplines

1. Use real data to infer decision's effect

2. Use simulated data to predict decision's effect

3. Use simulated data to predict decision's effect

4. Use simulated data to predict decision's effect

5. Use simulated data to predict decision's effect

6. Use simulated data to predict decision's effect

Building AI agents for personalized treatments

Building Al agents for personalized treatments

How to assign personalized digital treatments to help you?

Building Al agents for personalized treatments

How to assign personalized digital treatments to help you?

Building Al agents for personalized treatments

How to assign personalized digital treatments to help you?

PTSD Coach

Insomnia
Coach

Apple Research app
The future of health research is you.

Building AI agents for personalized treatments

How to assign personalized digital treatments to help you?

Mobile health study:
Personalized HeartSteps

- Goal: Promote physical activity via mobile app

- Population: 91 hypertension patients, 90 days

PTSD Coach

PTSD Family

Couples Coach

Insomnia Coach

Apple Research app The future of health research is you.

Building AI agents for personalized treatments

How to assign personalized digital treatments to help you?

Mobile health study:
 Personalized HeartSteps

Couples Coach

- Goal: Promote physical activity via mobile app
- Population: 91 hypertension patients, 90 days
- Treatment: Mobile notifications 5 times/day assigned by a bandit algorithm

Insomnia Coach

Apple Research app

Building AI agents for personalized treatments

How to assign personalized digital treatments to help you?

Mobile health study:
 Personalized HeartSteps

PTSD Coach

- Goal: Promote physical activity via mobile app

Insomnia Coach

ilibiil

Apple Research app

How to assign personalized digital treatments to help you?

After-study personalized inference questions

How to assign personalized digital
treatments to help you?
(2)Did the app increase physical activity for a given user?

After-study personalized inference questions

How to assign personalized digital
treatments to help you?

After-study personalized inference questions

How to assign personalized digital
treatments to help you?

After-study personalized inference questions

How to assign personalized digital treatments to help you?

1)

(2)Did the app increase physical activity for a given user?

Was sending the notification effective?
Was the bandit algorithm effective?

- Challenges: Lack of mechanistic models, adaptively collected data, expensive data collection

After-study personalized inference questions

How to assign personalized digital
treatments to help you?
(2)Did the app increase physical activity for a given user?

Was sending the notification effective?
Was the bandit algorithm effective?

- Challenges: Lack of mechanistic models, adaptively collected data, expensive data collection

(3) VA Mobile Apps
image credits

Part 1 overview: Sample-efficient personalized

 inference in sequential experimentsHow to assign personalized digital treatments to help you?

1)

(2)Did the app increase physical activity for a given user?

This talk
Was sending the notification effective?
Was the bandit algorithm effective?

- Challenges: Lack of mechanistic models, adaptively collected data, expensive data collection

PTSD Coach

PTSD Family Coach

Couples
Coach

Insomnia Coach

VA Mobile Apps

Problem set-up 壯吅"

Problem set-up

For user $i \in[N]$ at time $t \in[T]$
$A_{i, t}$: treatment $\in\{0,1\}$ (send a notification or not) assigned using policy ${ }_{i, t}$

Problem set-up

For user $i \in[N]$ at time $t \in[T]$
$A_{i, t}$: treatment $\in\{0,1\}$ (send a notification or not) assigned using policy ${ }_{i, t}$
e.g., ε-greedy, Thompson sampling, softmax, multiplicative weights, pooled variants,...

Sequentially adaptive policy that can pool observed data across users to speed up learning

Problem set－up

For user $i \in[N]$ at time $t \in[T]$
$A_{i, t}$ ：treatment $\in\{0,1\}$（send a notification or not）assigned using policy ${ }_{i, t}$
e．g．，ε－greedy，Thompson sampling， softmax，multiplicative weights，pooled variants，．．

Sequentially adaptive policy that can pool observed data across users to speed up learning
$\theta_{i, t}^{(a)}$ ：mean potential outcome／counterfactual for treatment $a \in\{0,1\}$ （mean step counts）

Problem set-up

For user $i \in[N]$ at time $t \in[T]$
$A_{i, t}:$ treatment $\in\{0,1\}$ (send a notification or not) assigned using policy ${ }_{i, t}$
e.g., ε-greedy, Thompson sampling, softmax, multiplicative weights, pooled variants,..

Sequentially adaptive policy that can pool observed data across users to speed up learning
$\theta_{i, t}^{(a)}$: mean potential outcome/counterfactual for treatment $a \in\{0,1\}$ (mean step counts)
outcome observed:

$$
Y_{i, t}=\theta_{i, t}^{\left(A_{i, t}\right)}+\text { noise }_{i, t}
$$

[Neyman-Rubin framework

+ SUTVA]

Problem set-up

For user $i \in[N]$ at time $t \in[T]$
$A_{i, t}$: treatment $\in\{0,1\}$ (send a notification or not) assigned using policy ${ }_{i, t}$
$\theta_{i, t}^{(a)}$: mean potential outcome/counterfactual for treatment $a \in\{0,1\}$ (mean step counts)
outcome observed:

$$
Y_{i, t}=\theta_{i, t}^{\left(A_{i, t}\right)}+\text { noise }_{i, t}
$$

[Neyman-Rubin framework

+ SUTVA]

Sequentially adaptive policy that can pool observed data across users to speed up learning
e.g., ε-greedy, Thompson sampling, softmax, multiplicative weights, pooled variants,..

Problem set-up

For user $i \in[N]$ at time $t \in[T]$
$A_{i, t}$: treatment $\in\{0,1\}$ (send a notification or not) assigned using policy ${ }_{i, t}$
$\theta_{i, t}^{(a)}$: mean potential outcome/counterfactual for treatment $a \in\{0,1\}$ (mean step counts)
outcome observed:

$$
Y_{i, t}=\theta_{i, t}^{\left(A_{i, t}\right)}+\text { noise }_{i, t}
$$

[Neyman-Rubin framework

+ SUTVA]
e.g., ε-greedy, Thompson sampling, softmax, multiplicative weights, pooled variants,..

Sequentially adaptive policy that can pool observed data across users to speed up learning

Problem set-up and goal

For user $i \in[N]$ at time $t \in[T]$
$A_{i, t}$: treatment $\in\{0,1\}$ (send a notification or not) assigned using policy ${ }_{i, t}$
$\theta_{i, t}^{(a)}$: mean potential outcome/counterfactual for treatment $a \in\{0,1\}$ (mean step counts)
outcome observed:

$$
Y_{i, t}=\theta_{i, t}^{\left(A_{i, t}\right)}+\text { noise }_{i, t}
$$

[Neyman-Rubin framework

+ SUTVA]

Sequentially adaptive policy that can pool observed data across users to speed up learning

Problem set-up and goal

For user $i \in[N]$ at time $t \in[T]$
$A_{i, t}$: treatment $\in\{0,1\}$ (send a notification or not) assigned using policy ${ }_{i, t}$
$\theta_{i, t}^{(a)}$: mean potential outcome/counterfactual for treatment $a \in\{0,1\}$ (mean step counts)
outcome observed:

$$
Y_{i, t}=\theta_{i, t}^{\left(A_{i, t}\right)}+\text { noise }_{i, t}
$$

[Neyman-Rubin framework

+ SUTVA]

Sequentially adaptive policy that can pool observed data across users to speed up learning

Estimate counterfactual means $\left\{\theta_{i, t}^{(a)}\right\}$ for $a \in\{0,1\}$ all N users \& T times

Problem set-up and goal

For user $i \in[N]$ at time $t \in[T]$
$A_{i, t}$: treatment $\in\{0,1\}$ (send a notification or not) assigned using policy ${ }_{i, t}$
$\theta_{i, t}^{(a)}$: mean potential outcome/counterfactual for treatment $a \in\{0,1\}$ (mean step counts)
outcome observed:

$$
Y_{i, t}=\theta_{i, t}^{\left(A_{i, t}\right)}+\text { noise }_{i, t}
$$

[Neyman-Rubin framework

+ SUTVA]

Sequentially adaptive policy that can pool observed data across users to speed up learning

Estimate counterfactual means $\left\{\theta_{i, t}^{(a)}\right\}$ for $a \in\{0,1\}$ all N users $\& T$ times

- Enable generic after-study analyses and assist next study design

Problem set-up and goal

For user $i \in[N]$ at time $t \in[T]$
$A_{i, t}$: treatment $\in\{0,1\}$ (send a notification or not) assigned using policy ${ }_{i, t}$
$\theta_{i, t}^{(a)}$: mean potential outcome/counterfactual for treatment $a \in\{0,1\}$ (mean step counts)
outcome observed:

$$
Y_{i, t}=\theta_{i, t}^{\left(A_{i, t}\right)}+\text { noise }_{i, t}
$$

[Neyman-Rubin framework

+ SUTVA]

Sequentially adaptive policy that can pool observed data across users to speed up learning

Estimate counterfactual means $\left\{\theta_{i, t}^{(a)}\right\}$ for $a \in\{0,1\}$ all N users $\& T$ times

- Enable generic after-study analyses and assist next study design
- E.g., how effective was the notification for user i at time $t\left(\theta_{i, t}^{(1)}-\theta_{i, t}^{(0)}\right)$?

Estimate counterfactual means $\left\{\theta_{i, t}^{(a)}\right\}$ for $a \in\{0,1\}$, all N users \& T times

Estimate counterfactual means $\left\{\theta_{i, t}^{(a)}\right\}$ for $a \in\{0,1\}$, all N users \& T times

Challenges:

\Rightarrow More unknowns than (noisy) observations

An impossible task without structural assumptions...

Estimate counterfactual means $\left\{\theta_{i, t}^{(a)}\right\}$ for $a \in\{0,1\}$, all N users \& T times

Challenges:

\Rightarrow More unknowns than (noisy) observations
\Rightarrow No parametric model available

An impossible task without structural

 assumptions...Estimate counterfactual means $\left\{\theta_{i, t}^{(a)}\right\}$ for $a \in\{0,1\}$, all N users \& T times

Challenges:

\Rightarrow More unknowns than (noisy) observations

- No parametric model available
\Rightarrow Intricate dependencies due to

An impossible task without structural

 assumptions...
Estimate counterfactual means $\left\{\theta_{i, t}^{(a)}\right\}$ for $a \in\{0,1\}$, all N users \& T times

Challenges:

= More unknowns than (noisy) observations

- No parametric model available
\Rightarrow Intricate dependencies due to
- Heterogeneity across users and time

An impossible task without structural

 assumptions...
Estimate counterfactual means $\left\{\theta_{i, t}^{(a)}\right\}$ for $a \in\{0,1\}$, all N users \& T times

Challenges:

= More unknowns than (noisy) observations

- No parametric model available
\Rightarrow Intricate dependencies due to
- Heterogeneity across users and time
- Sequentially adaptive policy

An impossible task without structural assumptions...

Estimate counterfactual means $\left\{\theta_{i, t}^{(a)}\right\}$ for $a \in\{0,1\}$, all N users \& T times

Challenges:

\Rightarrow More unknowns than (noisy) observations

- No parametric model available
\Rightarrow Intricate dependencies due to
- Heterogeneity across users and time
- Sequentially adaptive policy
- Pooling for policy design

An impossible task without structural assumptions...

Estimate counterfactual means $\left\{\theta_{i, t}^{(a)}\right\}$ for $a \in\{0,1\}$, all N users \& T times

Challenges:

\Rightarrow More unknowns than (noisy) observations
\Rightarrow No parametric model available
\Rightarrow Intricate dependencies due to

- Heterogeneity across users and time
- Sequentially adaptive policy
- Pooling for policy design

An impossible task without structural assumptions...

Hope:

$\star N$ iid users

Estimate counterfactual means $\left\{\theta_{i, t}^{(a)}\right\}$ for $a \in\{0,1\}$, all N users \& T times

Challenges:

\Rightarrow More unknowns than (noisy) observations
\Rightarrow No parametric model available
\Rightarrow Intricate dependencies due to

- Heterogeneity across users and time
- Sequentially adaptive policy
- Pooling for policy design

An impossible task without structural assumptions...

Hope:

$\star N$ iid users
$\star T$ (dependent) observations per user

Estimate counterfactual means $\left\{\theta_{i, t}^{(a)}\right\}$ for $a \in\{0,1\}$, all N users \& T times

Challenges:

\Rightarrow More unknowns than (noisy) observations
\Rightarrow No parametric model available
\Rightarrow Intricate dependencies due to

- Heterogeneity across users and time
- Sequentially adaptive policy
- Pooling for policy design

An impossible task without structural assumptions...

Hope:

$\star N$ iid users
$\star T$ (dependent) observations per user
\star If users are not all too different \& multiple observations can help find similarities

A possible task with some structural assumptions...

Estimate counterfactual means $\left\{\theta_{i, t}^{(a)}\right\}$ for $a \in\{0,1\}$, all N users \& T times

Challenges:

\Rightarrow More unknowns than (noisy) observations
= No parametric model available
\Rightarrow Intricate dependencies due to

- Heterogeneity across users and time
- Sequentially adaptive policy
- Pooling for policy design

An impossible task without structural assumptions...

Prior work:

- Average treatment effect

Estimate counterfactual means $\left\{\theta_{i, t}^{(a)}\right\}$ for $a \in\{0,1\}$, all N users \& T times

Challenges:

\Rightarrow More unknowns than (noisy) observations

- No parametric model available
\Rightarrow Intricate dependencies due to
- Heterogeneity across users and time
- Sequentially adaptive policy
- Pooling for policy design

Prior work:

- Average treatment effect
- IID users \& deterministic rules/policies

An impossible task without structural assumptions...
[... Robins '94, '97, '00, '08, Murphy '03, '05, Hernan+ '06, Moodie+ '07,

Estimate counterfactual means $\left\{\theta_{i, t}^{(a)}\right\}$ for $a \in\{0,1\}$, all N users \& T times

Challenges:

\Rightarrow More unknowns than (noisy) observations

- No parametric model available
\Rightarrow Intricate dependencies due to
- Heterogeneity across users and time
- Sequentially adaptive policy
- Pooling for policy design

Prior work:

- Average treatment effect
- IID users \& deterministic rules/policies
- IID users at each time with stochastic policies

An impossible task without structural assumptions...

Deshpande+'18, Hadad+ '21, Bibaut+ '21, Khamaru+ '21, Zhang+ '21

Estimate counterfactual means $\left\{\theta_{i, t}^{(a)}\right\}$ for $a \in\{0,1\}$, all N users \& T times

Challenges:

\Rightarrow More unknowns than (noisy) observations

- No parametric model available
\Rightarrow Intricate dependencies due to
- Heterogeneity across users and time
- Sequentially adaptive policy
- Pooling for policy design

Prior work:

- Average treatment effect
- IID users \& deterministic rules/policies
- IID users at each time with stochastic policies
- IID user trajectories (per user policy, no pooling)

An impossible task without structural assumptions...

Deshpande+'18, Hadad+ '21, Bibaut+ '21, Khamaru+ '21, Zhang+ '21

Estimate counterfactual means $\left\{\theta_{i, t}^{(a)}\right\}$ for $a \in\{0,1\}$, all N users \& T times

Challenges:

\Rightarrow More unknowns than (noisy) observations

- No parametric model available
\Rightarrow Intricate dependencies due to
- Heterogeneity across users and time
- Sequentially adaptive policy
- Pooling for policy design

An impossible task without structural assumptions...

Prior work:

- Average treatment effect
- IID users \& deterministic rules/policies
- IID users at each time with stochastic policies
- IID user trajectories (per user policy, nc pooling)
- Observational studies (once treated forever treated; synthetic control, causal panel data)

Structural assumption: Non-parametric factor model

$$
Y_{i, t}=\theta_{i, t}^{(4, t)}+\text { noise }_{i, t}
$$

Structural assumption: Non-parametric factor model

$$
Y_{i, t}=\theta_{i, t}^{\left(A_{i, t}\right)}+\text { noise }_{i, t}
$$

$$
\begin{array}{cc}
\theta_{i, t}^{(a)} \stackrel{\Delta}{=} f^{(a)}\left(u_{i}^{(a)}, v_{t}^{(a)}\right) \\
\text { user factor } & \text { time factor } \\
\begin{array}{cc}
(\text { e.g., personal } & \text { (e.g., societal, weather } \\
\text { traits) } & \text { changes) }
\end{array}
\end{array}
$$

Structural assumption: Non-parametric factor model

$$
Y_{i, t}=\theta_{i, t}^{\left(A_{i, t}\right)}+\text { noise }_{i, t}
$$

No parametric assumptions on

- unknown non-linearity
- distributions of unobserved
latent factors and noise

Structural assumption: Non-parametric factor model

$$
Y_{i, t}=\theta_{i, t}^{\left(A_{i, t}\right)}+\text { noise }_{i, t}
$$

$$
\theta_{i, t}^{(a)} \stackrel{\Delta}{=} f^{(a)}\left(u_{i}^{(a)}, v_{t}^{(a)}\right)
$$

Structural assumption: Non-parametric factor model

$$
Y_{i, t}=\theta_{i, t}^{\left(A_{i, t}\right)}+\text { noise }_{i, t}
$$

$$
\theta_{i, t}^{(a)} \stackrel{\Delta}{=} f^{(a)}\left(u_{i}^{(a)}, v_{t}^{(a)}\right)
$$

No parametric assumptions on

- unknown non-linearity
- distributions of unobserved latent factors and noise

Structural assumption: Non-parametric factor model

$$
Y_{i, t}=\theta_{i, t}^{\left(A_{i, t}\right)}+\text { noise }_{i, t}
$$

$$
\theta_{i, t}^{(a)} \stackrel{\Delta}{\substack{\text { user factor }}} \underset{\substack{(a)}}{\substack{\text { (e.g., personal } \\
\text { traits) }}} \begin{gathered}
\text { (e.g., societal, weather } \\
\text { changes) }
\end{gathered}
$$

No parametric assumptions on

- unknown non-linearity
- distributions of unobserved latent factors and noise

Structural assumption: Non-parametric factor model

$$
Y_{i, t}=\theta_{i, t}^{\left(A_{i, t}\right)}+\text { noise }_{i, t}
$$

$$
\theta_{i, t}^{(a)} \stackrel{\Delta}{\text { user factor }} \underset{\substack{(a)}}{\substack{\text { (e.g., personal } \\
\text { traits) }}} \begin{gathered}
\text { (e.g., societal, weather } \\
\text { changes) }
\end{gathered}
$$

No parametric assumptions on

- unknown non-linearity
- distributions of unobserved latent factors and noise

User nearest neighbors estimator for $\theta_{i, t}^{(a)}$

$$
Y_{i t}=\theta_{i, k}^{(a, j)}+\text { noise }_{t, t}
$$

User nearest neighbors estimator for $\theta_{i, t}^{(a)}$

$$
Y_{i, t}=\theta_{i, t}^{\left(A_{i, t}\right)}+\text { noise }_{i, t}
$$

1. Compute distance between two users i and j under treatment a

User nearest neighbors estimator for $\theta_{i, t}^{(a)}$

1. Compute distance between two users i and j under treatment a

$$
\rho_{i, j}^{(a)}=\frac{\sum_{t^{\prime}=1}^{T}\left(Y_{i, t^{\prime}}-Y_{j, t^{\prime}}\right)^{2} \cdot \mathbf{1}\left(A_{i, t^{\prime}}=A_{j, t^{\prime}}=a\right)}{\sum_{t^{\prime}=1}^{T} \mathbf{1}\left(A_{i, t^{\prime}}=A_{j, t^{\prime}}=a\right)}
$$

User nearest neighbors estimator for $\theta_{i, t}^{(a)}$

1. Compute distance between two users i and j under treatment a

$$
\rho_{i, j}^{(a)}=\frac{\sum_{t^{\prime}=1}^{T}\left(Y_{i, t^{\prime}}-Y_{j, t^{\prime}}\right)^{2} \cdot \mathbf{1}\left(A_{i, t^{\prime}}=A_{j, t^{\prime}}=a\right)}{\sum_{t^{\prime}=1}^{T} \mathbf{1}\left(A_{i, t^{\prime}}=A_{j, t^{\prime}}=a\right)}
$$

Squared distance between outcomes averaged over all times when i and j are both treated with a

User nearest neighbors estimator for $\theta_{i, t}^{(a)}$

1. Compute distance between two users i and j under treatment a

$$
\rho_{i, j}^{(a)}=\frac{\sum_{t=1}^{T}\left(Y_{i, t}-Y_{j, t}\right)^{2} \cdot \mathbf{1}\left(A_{i, t}=A_{j, t}=a\right)}{\sum_{t=1}^{T} \mathbf{1}\left(A_{i, t}=A_{j, t}=a\right)}
$$

Squared distance between outcomes averaged over all times when i and j are both treated with a
2. Average outcome across user neighbors treated with a at time t

$$
\mathbf{1}\left(\rho_{i, j}^{(a)} \leq \eta, A_{j, t}=a\right)
$$

User nearest neighbors estimator for $\theta_{i, t}^{(a)}$

$$
Y_{i, t}=\theta_{i, t}^{(4, t)}+\text { noise }_{i, t}
$$

1. Compute distance between two users i and j under treatment a

$$
\rho_{i, j}^{(a)}=\frac{\sum_{t^{\prime}=1}^{T}\left(Y_{i, t^{\prime}}-Y_{j, t^{\prime}}\right)^{2} \cdot \mathbf{1}\left(A_{i, t^{\prime}}=A_{j, t^{\prime}}=a\right)}{\sum_{t^{\prime}=1}^{T} \mathbf{1}\left(A_{i, t^{\prime}}=A_{j, t^{\prime}}=a\right)}
$$

Squared distance between outcomes averaged over all times when i and j are both treated with a
2. Average outcome across user neighbors treated with a at time t

$$
\hat{\theta}_{i, t, \text { user-NN }}^{(a)}=\frac{\sum_{j=1}^{N} Y_{j, t} \cdot \mathbf{1}\left(\rho_{i, j}^{(a)} \leq \eta, A_{j, t}=a\right)}{\sum_{j=1}^{N} \mathbf{1}\left(\rho_{i, j}^{(a)} \leq \eta, A_{j, t}=a\right)}
$$

Main result: A non-asymptotic guarantee for each (i, $t, a)$

Main result: A non-asymptotic guarantee for each (i, t, a)

Informal theorem: [Dwivedi-Tian-Tomkins-Klasnja-Murphy-Shah '22a]
For suitably chosen η \& under regularity conditions

Main result: A non-asymptotic guarantee for each (i,t,a)

Informal theorem: [Dwivedi-Tian-Tomkins-Klasnja-Murphy-Shah '22a]
For suitably chosen η \& under regularity conditions

- Lipschitz non-linearity, iid latent factors, sub-Gaussian noise

Main result: A non-asymptotic guarantee for each (i, t, a)

Informal theorem: [Dwivedi-Tian-Tomkins-Klasnja-Murphy-Shah '22a]
For suitably chosen η \& under regularity conditions

- Lipschitz non-linearity, iid latent factors, sub-Gaussian noise
- generic sequentially adaptive policies that assign treatments independently to users conditioned on observed history \& choose a with probability $\geq p$

Main result: A non-asymptotic guarantee for each (i,t,a)

Informal theorem: [Dwivedi-Tian-Tomkins-Klasnja-Murphy-Shah '22a]
For suitably chosen η \& under regularity conditions

- Lipschitz non-linearity, iid latent factors, sub-Gaussian noise
- generic sequentially adaptive policies that assign treatments independently to users conditioned on observed history \& choose a with probability $\geq p$
for each user i at each time t, with high probability

Main result: A non-asymptotic guarantee for each (i,t,a)

Informal theorem: [Dwivedi-Tian-Tomkins-Klasnja-Murphy-Shah '22a]
For suitably chosen η \& under regularity conditions

- Lipschitz non-linearity, iid latent factors, sub-Gaussian noise
- generic sequentially adaptive policies that assign treatments independently to users conditioned on observed history \& choose a with probability $\geq p$
for each user i at each time t, with high probability

$$
\left|\hat{\theta}_{i, t, \text { user-NN }}^{(a)}-\theta_{i, t}^{(a)}\right| \lesssim \frac{1}{T^{1 / 4}}+\frac{1}{(N / M)^{1 / 2}}
$$

(Uniform on finite set of size M)

Main result: A non-asymptotic guarantee for each (i,t,a)

Informal theorem: [Dwivedi-Tian-Tomkins-Klasnja-Murphy-Shah '22a]
For suitably chosen η \& under regularity conditions

- Lipschitz non-linearity, iid latent factors, sub-Gaussian noise
- generic sequentially adaptive policies that assign treatments independently to users conditioned on observed history \& choose a with probability $\geq p$
for each user i at each time t, with high probability

$$
\begin{aligned}
& \left|\hat{\theta}_{i, t, \text { user-NN }}^{(a)}-\theta_{i, t}^{(a)}\right| \lesssim \frac{1}{T^{1 / 4}}+\frac{1}{(N / M)^{1 / 2}} \\
& \left|\hat{\theta}_{i, t, \text { user-NN }}^{(a)}-\theta_{i, t}^{(a)}\right| \lesssim \frac{1}{T^{1 / 4}}+\frac{1}{N^{1 /(d+2)}}
\end{aligned}
$$

User factor distribution
(Uniform on finite set of size M)
(Uniform over $[-1,1]^{d}$)
$\left(†\right.$ Our general results allow p to decay as $\left.\gtrsim T^{-1 / 2}\right)$

User-NN guarantees: Advantages

User-NN guarantees: Advantages

- Asymptotic confidence intervals as $N, T \rightarrow \infty$:

$$
\widehat{\theta}_{i, t, \text { user-NN }}^{(a)} \pm \frac{1.96 \hat{\sigma}}{\sqrt{\#_{\text {neighbors }}^{i, t, a}}}
$$

User-NN guarantees: Advantages

- Asymptotic confidence intervals as $N, T \rightarrow \infty$:

$$
\begin{aligned}
\hat{\theta}_{i, t, \text { user-NN }}^{(a)} \pm & \frac{1.96 \hat{\sigma}}{\sqrt{\#_{\text {neighbors }}^{i, t, a}}} \\
&
\end{aligned}
$$

Confidence intervals for treatment effect $\theta_{i, t}^{(1)}-\theta_{i, t}^{(0)}$

User-NN guarantees: Advantages

- Asymptotic confidence intervals as $N, T \rightarrow \infty$:

$$
\begin{aligned}
& \widehat{\theta}_{i, t, \text { user-NN }}^{(a)} \pm \frac{1.96 \hat{\sigma}}{\sqrt{\#_{\text {neighbors }}^{i, t, a}}} \\
& \downarrow
\end{aligned}
$$

Confidence intervals for treatment effect $\theta_{i, t}^{(1)}-\theta_{i, t}^{(0)}$

Challenges tackled: First guarantee for user-time-level counterfactuals
\checkmark More unknowns than observations
\checkmark Non-parametric model
\checkmark Heterogeneity across users \& time \checkmark Generic sequential policies

User-NN guarantees: Advantages

- Asymptotic confidence intervals as $N, T \rightarrow \infty$:

- $\left|\hat{\theta}_{i, t \text { user-NN }}^{(a)}-\theta_{i, t}^{(a)}\right|=\tilde{O}\left(\frac{1}{T^{1 / 4}}+\frac{1}{\sqrt{N}}\right)$

Challenges tackled: First guarantee for user-time-level counterfactuals
\checkmark More unknowns than observations
\checkmark Non-parametric model
\checkmark Heterogeneity across users \& time
\checkmark Generic sequential policies

User-NN guarantees: Advantages

Challenges tackled: First guarantee

- Asymptotic confidence intervalls as $N, T \rightarrow \infty$: for user-time-level counterfactuals

- $\left|\widehat{\theta}_{i, t, \text { user-NN }}^{(a)}-\theta_{i, t}^{(a)}\right|=\tilde{O}\left(\frac{1}{T^{1 / 4}}+\frac{1}{\sqrt{N}}\right)$
\checkmark More unknowns than observations
$\sqrt{ }$ Non-parametric model
\checkmark Heterogeneity across users \& time
\checkmark Generic sequential policies

$$
\text { ?? }-\theta_{i, t}^{(a)} \left\lvert\,=\tilde{O}\left(\frac{1}{\sqrt{T}}+\frac{1}{\sqrt{N}}\right)\right. \text { Can we improve the slow rate in T? }
$$

Yes, we can!

A near-quadratic improvement over user-NN

Yes, we can!

A near-quadratic improvement over user-NN

Informal theorem: [Dwivedi-Tian-Tomkins-Klasnja-Murphy-Shah '22b]
A suitable variant of nearest neighbors improves* upon the user-NN error

$$
\begin{aligned}
& \left|\hat{\theta}_{i, t, s e c e-N \mathbb{N}}^{(i)}-\theta_{i, l}^{(i)}\right|=\tilde{o}\left(\frac{1}{T^{1 / 4}}+\frac{1}{\sqrt{N}}\right)
\end{aligned}
$$

Yes, we can!

A near-quadratic improvement over user-NN

Informal theorem: [Dwivedi-Tian-Tomkins-Klasnja-Murphy-Shah '22b]
A suitable variant of nearest neighbors improves* upon the user-NN error

$$
\begin{aligned}
\left|\hat{\theta}_{i, t, u s e r-N \mathrm{~N}}^{(a)}-\theta_{i, t}^{(a)}\right| & =\tilde{O}\left(\frac{1}{T^{1 / 4}}+\frac{1}{\sqrt{N}}\right) \\
& \downarrow \\
\left|\hat{\theta}_{i, t, \mathrm{DR}-\mathrm{NN}}^{(a)}-\theta_{i, t}^{(a)}\right| & =\tilde{O}\left(\frac{1}{\sqrt{T}}+\frac{1}{\sqrt{N}}\right)
\end{aligned}
$$

*for Lipschitz non-linearity with Lipschitz gradients \& non-adaptive policies

Proof intuition for user-NN

Proof intuition for user-NN

Simple case: Estimate $\theta_{i, t}^{(a)} \triangleq f^{(a)}\left(u_{i}^{(a)}, v_{t}^{(a)}\right)=u_{i} v_{t}$

Proof intuition for user-NN

Simple case: Estimate $\theta_{i, t}^{(a)} \triangleq f^{(a)}\left(u_{i}^{(a)}, v_{t}^{(a)}\right)=u_{i} v_{t}$

- $\widehat{\theta}_{i, t, \text { user-NN }}^{(a)}=\frac{\sum_{j \in \text { user-nn }} Y_{j, t}}{\# \text { user-nn }}=\frac{\sum_{j \in \text { user-nn }} \theta_{j, t}^{(a)}+\text { noise }_{j, t}}{\# \text { user-nn }}$

Proof intuition for user-NN

Simple case: Estimate $\theta_{i, t}^{(a)} \triangleq f^{(a)}\left(u_{i}^{(a)}, v_{t}^{(a)}\right)=u_{i} v_{t}$

- $\hat{\theta}^{(a)}$

$$
\begin{aligned}
&=\frac{\sum_{j \in \text { user-nn }} Y_{j, t}}{\# \text { user-nn }}= \frac{\sum_{j \in \text { user-nn }} \theta_{j, t}^{(a)}+\text { noise }_{j, t}}{\# \text { user-nn }} \\
&= \frac{\sum_{j \in \text { user-nn } u_{j}}^{\# u^{\prime}}}{\hat{u}_{i}} v_{t}+\text { avg.n.noise } \\
& t
\end{aligned}
$$

Proof intuition for user-NN

Simple case: Estimate $\theta_{i, t}^{(a)} \triangleq f^{(a)}\left(u_{i}^{(a)}, v_{t}^{(a)}\right)=u_{i} v_{t}$

- $\widehat{\theta}_{i, t, \text { user-NN }}^{(a)}=\frac{\sum_{j \in \text { user-nn }} Y_{j, t}}{\# \text { user-nn }}=\frac{\sum_{j \in \text { user-nn }} \theta_{j, t}^{(a)}+\text { noise }_{j, t}}{\# \text { user-nn }}$

$$
\begin{aligned}
&= \frac{\sum_{j \in \text { user-nn } u_{j}}}{\# \text { user-nn }} v_{t}+\text { avg. noise }, \\
& \hat{u}_{i}
\end{aligned}
$$

- $\left|u_{i} v_{t}-\hat{\theta}_{i, t, \text { user-NN }}^{(a)}\right| \leq\left|u_{i} v_{t}-\hat{u}_{i} v_{t}\right|+\mid$ avg. noise $\mid=O\left(\left|u_{i}-\hat{u}_{i}\right|\right)$

Proof intuition for user-NN

Simple case: Estimate $\theta_{i, t}^{(a)} \triangleq f^{(a)}\left(u_{i}^{(a)}, v_{t}^{(a)}\right)=u_{i} v_{t}$
$\hat{\theta}_{i, t, \text { user-NN }}^{(a)}=\frac{\sum_{j \in \text { user-nn }} Y_{j, t}}{\# \text { user-nn }}=\frac{\sum_{j \in \text { user-nn }} \theta_{j, t}^{(a)}+\text { noise }_{j, t}}{\# \text { user-nn }}$

$$
=\frac{\sum_{j \in \text { user-nn }} u_{j}}{\# \text { user-nn }} v_{t}+\text { avg. noise }{ }_{t}
$$

- $\left|u_{i} v_{t}-\hat{\theta}_{i, t, \text { user-NN }}^{(a)}\right| \leq\left|u_{i} v_{t}-\hat{u}_{i} v_{t}\right|+\mid$ avg. noise $\mid \xlongequal{=O\left(\left|u_{i}-\hat{u}_{i}\right|\right)}$

Proof intuition for user-NN

Simple case: Estimate $\theta_{i, t}^{(a)} \triangleq f^{(a)}\left(u_{i}^{(a)}, v_{t}^{(a)}\right)=u_{i} v_{t}$

```
- }\mp@subsup{\hat{0}}{i,t}{(a)
    l,t,user-NN
```


$$
=\frac{\sum_{j \in \text { user-nn }} u_{j}}{\# \text { user-nn }} v_{t}+\text { avg. noise }{ }_{t}
$$

- $\left|u_{i} v_{t}-\hat{\theta}_{i, t, \text { user-NN }}^{(a)}\right| \leq\left|u_{i} v_{t}-\hat{u}_{i} v_{t}\right|+\mid \operatorname{avg} \cdot$ noise $_{t} \mid \stackrel{\leftarrow}{=}\left(\left|u_{i}-\hat{u}_{i}\right|\right)$

$$
\hat{u}_{i}
$$

Proof intuition for user-NN

Simple case: Estimate $\theta_{i, t}^{(a)} \triangleq f^{(a)}\left(u_{i}^{(a)}, v_{t}^{(a)}\right)=u_{i} v_{t}$

- $\hat{\theta}_{i, t, \text { user-NN }}^{(a)}$

$$
=\frac{\sum_{j \in \text { user }-\mathrm{nn}} u_{j}}{\# \text { user-nn }} v_{t}+\text { avg. noise }{ }_{t}
$$

- $\left|u_{i} v_{t}-\hat{\theta}_{i, t, \text { user-NN }}^{(a)}\right| \leq\left|u_{i} v_{t}-\hat{u}_{i} v_{t}\right|+\mid$ avg. noise $\mid t \stackrel{\leftarrow}{\leftarrow} \stackrel{\left(u_{i}-\hat{u}_{i} \mid\right)}{ }$

$$
\hat{u}_{i}
$$

Martingale concentration, new sandwich argument for $n n$

- $\left|u_{i} v_{t}-\widehat{\theta}_{i, t, \text { time-NN }}^{(a)}\right| \leq\left|u_{i} v_{t}-u_{i} \hat{v}_{t}\right|+\mid$ avg. noise ${ }_{i} \mid=O\left(\left|v_{t}-\hat{v}_{t}\right|\right)$

Steps towards the improved estimator...

Steps towards the improved estimator...

- Plug-in principle: $\left|u_{i} v_{t}-\hat{u}_{i} \hat{v}_{t}\right| \leq\left|u_{i} v_{t}-\hat{u}_{i} v_{t}\right|+\left|\hat{u}_{i} v_{t}-\hat{u}_{i} \hat{v}_{t}\right|$

$$
=O\left(\left|u_{i}-\hat{u}_{i}\right|+\left|v_{t}-\hat{v}_{t}\right|\right)
$$

Steps towards the improved estimator...

- Plug-in principle: $\left|u_{i} v_{t}-\hat{u}_{i} \hat{v}_{t}\right| \leq\left|u_{i} v_{t}-\hat{u}_{i} v_{t}\right|+\left|\hat{u}_{i} v_{t}-\hat{u}_{i} \hat{v}_{t}\right|$

$$
=O\left(\left|u_{i}-\hat{u}_{i}\right|+\left|v_{t}-\hat{v}_{t}\right|\right)
$$

- Convert + to $\times: \quad \mid u_{i} v_{t}-? ~ ? ~=O\left(\left|u_{i}-\hat{u}_{i}\right| \times\left|v_{t}-\hat{v}_{t}\right|\right)$

Steps towards the improved estimator...

- Plug-in principle: $\left|u_{i} v_{t}-\hat{u}_{i} \hat{v}_{t}\right| \leq\left|u_{i} v_{t}-\hat{u}_{i} v_{t}\right|+\left|\hat{u}_{i} v_{t}-\hat{u}_{i} \hat{v}_{t}\right|$

$$
\begin{aligned}
& =O\left(\left|u_{i}-\hat{u}_{i}\right|+\left|v_{t}-\hat{v}_{t}\right|\right) \\
& \approx \max \left\{\left|\hat{u}_{i}-u_{i}\right|,\left|v_{t}-\hat{v}_{t}\right|\right\}
\end{aligned}
$$

- Convert + to $\times: \quad\left|u_{i} v_{t}-? \rightarrow\right|=O\left(\left|u_{i}-\hat{u}_{i}\right| \times\left|v_{t}-\hat{v}_{t}\right|\right)$

$$
\approx \min \left\{\left|\hat{u}_{i}-u_{i}\right|,\left|v_{t}-\hat{v}_{t}\right|\right\}
$$

What should be our estimator? Let's expand the RHS...

What should be our estimator? Let's expand the RHS...

$$
u_{i} v_{t}-? ?=\left(u_{i}-\hat{u}_{i}\right) \times\left(v_{t}-\hat{v}_{t}\right)
$$

What should be our estimator? Let's expand the RHS...

$$
\begin{aligned}
u_{i} v_{t}-? ? & =\left(u_{i}-\hat{u}_{i}\right) \times\left(v_{t}-\hat{v}_{t}\right) \\
& =u_{i} v_{t}-\hat{u}_{i} v_{t}-u_{i} \hat{v}_{t}+\hat{u}_{i} \hat{v}_{t} \\
\Rightarrow \quad ? & =\hat{u}_{i} v_{t}+u_{i} \hat{v}_{t}-\hat{u}_{i} \hat{v}_{t}
\end{aligned}
$$

What should be our estimator? Let's expand the RHS...

$$
\begin{gathered}
u_{i} b_{t}-? ?=\left(u_{i}-\hat{u}_{i}\right) \times\left(v_{t}-\hat{v}_{t}\right) \\
=u_{i} v_{t}-\hat{u}_{i} v_{t}-u_{i} \hat{v}_{t}+\hat{u}_{i} \hat{v}_{t} \\
\Rightarrow ? ?=\hat{u}_{i} v_{t}+u_{i} \hat{v}_{t}-\hat{u}_{i} \hat{v}_{t} \\
Y_{j, t}+Y_{i, t^{\prime}}-Y_{j, t^{\prime}} \\
\rho_{i, j}^{(a)} \leq \eta, \quad \rho_{t, t^{\prime}}^{(a)} \leq \eta^{\prime}
\end{gathered}
$$

This is our improved nearest neighbors estimator!

$$
\begin{gathered}
u_{i} x_{t}-? ?=\left(u_{i}-\hat{u}_{i}\right) \times\left(v_{t}-\hat{v}_{t}\right) \\
=y_{i} v_{t}-\hat{u}_{i} v_{t}-u_{i} \hat{v}_{t}+\hat{u}_{i} \hat{v}_{t} \\
\Rightarrow \quad ? \quad=\hat{u}_{i} v_{t}+u_{i} \hat{v}_{t}-\hat{u}_{i} \hat{v}_{t} \\
\hat{\theta}_{i, t, \mathrm{DR}-\mathrm{NN}}^{(a)}=\frac{\sum_{j, t^{\prime}}\left(Y_{j, t}+Y_{i, t^{\prime}}-Y_{j, t^{\prime}}\right) \mathbf{1}_{i, t, j, t^{\prime}}}{\sum_{j, t^{\prime}} \mathbf{1}_{i, t, j, t^{\prime}}} \\
\mathbf{1}_{i, t, j, t^{\prime}}=\mathbf{1}\left(\rho_{i, j}^{(a)} \leq \eta, \rho_{t, t^{\prime}}^{(a)} \leq \eta^{\prime}, A_{j, t}=A_{i, t^{\prime}}=A_{j, t^{\prime}}=a\right)
\end{gathered}
$$

This is our improved nearest neighbors estimator!

$$
\begin{aligned}
& u_{i} v_{t}-? ?=\left(u_{i}-\hat{u}_{i}\right) \times\left(v_{t}-\hat{v}_{t}\right) \\
&=u_{i} \nu_{t}-\hat{u}_{i} v_{t}-u_{i} \hat{v}_{t}+\hat{u}_{i} \hat{v}_{t} \\
& \Rightarrow \\
& \text { DR-NN error } \approx \text { user-NN error } \times \text { time-NN error } \\
& \lesssim \min \{\text { user-NN error, time-NN error }\}
\end{aligned}
$$

This is our improved nearest neighbors estimator!

$$
\begin{aligned}
u_{i} v_{t}-? ? & =\left(u_{i}-\hat{u}_{i}\right) \times\left(v_{t}-\hat{v}_{t}\right) \\
& =u_{i} i_{t}-\hat{u}_{i} v_{t}-u_{i} \hat{v}_{t}+\hat{u}_{i} \hat{v}_{t} \\
\Rightarrow \quad ? & =\hat{u}_{i} v_{t}+u_{i} \hat{v}_{t}-\hat{u}_{i} \hat{v}_{t}
\end{aligned}
$$

DR-NN error \approx user-NN error \times time-NN error § min\{user-NN error, time-NN error\}

Doubly robust to heterogeneity in user factors \& time factors
Double robustness, double machine learning.
[... Cassel+ '77, Robinson '88, Särndal+ '89, Robins+ '94, '95, '08, '09, Newey+ '94, '18, Bickel+ '98, van der Laan+ '03, Lunceford+ '04, Davidian+ '05, Li+ '11, Jiang+ '15, Chernozhukov+ '18, Hirshberg+ '18, Diaz '19, Arkhangelsky+ '21, Dorn+ '21 ...]

Simulation results

Simulation results

Uniform latent factors on $[-0.5,0.5]^{4}$, Gaussian noise, pooled ε-greedy policy $(\varepsilon=0.5)$

Simulation results

Uniform latent factors on $[-0.5,0.5]^{4}$, Gaussian noise, pooled ε-greedy policy ($\varepsilon=0.5$)

A baseline
algorithm from
[Chatterjee 2014]

Simulation results

Uniform latent factors on $[-0.5,0.5]^{4}$, Gaussian noise, pooled ε-greedy policy $(\varepsilon=0.5)$

Decay of avg. error across users ($\mathrm{N}=\mathrm{T}, 20$ trials)

A baseline
algorithm from
[Chatterjee 2014]

DR-NN error $\ll \boldsymbol{\operatorname { m i n }}\{$ user-NN error, time-NN error \}

Personalized HeartSteps results 醇 (\square "

Treatments assigned with Thompson sampling independently for 91 users for 90 days, 5 times a day

Personalized HeartSteps results 毁＂口＂ネ．．．．

Treatments assigned with Thompson sampling independently for 91 users for 90 days， 5 times a day

Personalized HeartSteps results

Treatments assigned with Thompson sampling independently for 91 users for 90 days, 5 times a day

Part 1 summary:

Sample-efficient inference with non-parametric factor models

Part 1 summary:

Sample-efficient inference with non-parametric factor models
$\sqrt{ }$ Inference in sequential experiments: User-NN with $\tilde{O}\left(T^{-1 / 4}\right)$ error
$\sqrt{ }$ Efficient estimators: Doubly robust-NN with $\tilde{O}\left(T^{-1 / 2}\right)$ error

DR-NN error \approx user-NN error \times time-NN error § min\{user-NN error, time-NN error\}

- Future: Settings with contexts and covariates

1. Use real data to infer decision's effect

2. Use real data to infer decision's effect

3. Use simulated data to predict decision's effect

Complex multi-scale simulation systems

Complex multi-scale simulation systems

Cardiology

Complex multi-scale simulation systems

Complex multi-scale simulation systems

Computational cardiology: Personalized HeartBeats

Computational cardiology: Personalized HeartBeats

Computational cardiology: Personalized HeartBeats

- Dysregulation of calcium signaling in heart cells can cause lethal arrhythmias

Computational cardiology: Personalized HeartBeats

- Dysregulation of calcium signaling in heart cells can cause lethal arrhythmias
- Task: Simulate multi-scale digital twin models of heart for personalized predictions of dysregulation's effect on a patient's heartbeat

Computational cardiology: Personalized HeartBeats

- Dysregulation of calcium signaling in heart cells can cause lethal arrhythmias
- Task: Simulate multi-scale digital twin models of heart for personalized predictions of dysregulation's effect on a patient's heartbeat

1. Estimate cell-model parameters with uncertainty quantification with single cell measurements via Bayesian inference and posterior sampling

Computational cardiology: Personalized HeartBeats

- Dysregulation of calcium signaling in heart cells can cause lethal arrhythmias
- Task: Simulate multi-scale digital twin models of heart for personalized predictions of dysregulation's effect on a patient's heartbeat

1. Estimate cell-model parameters with uncertainty quantification with single cell measurements via Bayesian inference and posterior sampling
2. Propagate cell-model uncertainty to whole-heart model via simulations and Monte Carlo integration

Impact of calcium signaling dysregulation on heartbeat-Two-stage inferential pipeline

Impact of calcium signaling dysregulation on heartbeat-Two-stage inferential pipeline

1. Random sampling via MCMC $X_{1}, \ldots, X_{T} \sim \mathbb{P}^{\star}$ (posterior in \mathbb{R}^{38})

Impact of calcium signaling dysregulation on heartbeat-Two-stage inferential pipeline

Standard tasks but computationally challenging...

- $T=10^{6}$ to explore \mathbb{P}^{\star} well

Standard tasks but computationally challenging...

- $T=10^{6}$ to explore \mathbb{P}^{\star} well
- Time to run MCMC
~ 2 CPU weeks

Standard tasks but computationally challenging...

- Single f simulation~ 4 CPU weeks
- Time to run MCMC
~ 2 CPU weeks

Standard tasks but computationally challenging...

Random sampling via MCMC

(posterior in \mathbb{R}^{38})

- $T=10^{6}$ to explore \mathbb{P}^{\star} well
- Time to run MCMC
~ 2 CPU weeks

Heart model f
2. Uncertainty propagation via Monte

Carlo integration (mean, variance,
$\mathbb{P}^{\star} f \triangleq \int f(X) d \mathbb{P}^{\star}(X) \approx \frac{1}{T} \sum_{i=1}^{T} f\left(X_{i}\right)$

- Single f simulation 4 CPU weeks
- Time to compute sample mean
~ 4 Million CPU weeks

Standard tasks but computationally challenging...

Cell
Cell
model X
model X

Random sampling via MCMC

- $T=10^{6}$ to explore \mathbb{P}^{\star} well
- Time to run MCMC
~ 2 CPU weeks
- How to make MCMC computationally faster?

Heart
model f
??

2. Uncertainty propagation via Monte

Carlo integration
$\mathbb{P}^{\star} f \triangleq \int f(X) d \mathbb{P}^{\star}(X) \approx \frac{1}{T} \sum_{i=1}^{T} f\left(X_{i}\right)$

- Single f simulation~ 4 CPU weeks
- Time to compute sample mean ~ 4 Million CPU weeks
- How to make integration computationally feasible?

Part 2 overview: Computationally-efficient integration for high-dimensional models

> Cell
> model X

- $T=10^{6}$ to explore \mathbb{P}^{\star} well
- Time to run MCMC
~ 2 CPU weeks
- How to make MCMC computationally faster?

Random sampling via MCMC


```
(posterior in \mathbb{R}
```


2. Uncertainty propagation via Monte

Carlo integration (mean, variance
$\mathbb{P}^{\star} f \triangleq \int f(X) d \mathbb{P}^{\star}(X) \approx \frac{1}{T} \sum_{i=1}^{T} f\left(X_{i}\right)$

- Single f simulation~ 4 CPU weeks
- Time to compute sample mean ~ 4 Million CPU weeks
- How to make integration computationally feasible?

Efficient integration via distribution compression

Efficient integration via distribution compression

TIID or MCMC points

$$
\begin{gathered}
X_{1}, \ldots, X_{T} \\
\mathbb{P}_{T} f \triangleq \frac{\Sigma_{i=1}^{T} f\left(X_{i}\right)}{T}
\end{gathered}
$$

Efficient integration via distribution compression

T IID or MCMC points

$$
\begin{gathered}
X_{1}, \ldots, X_{T} \\
\mathbb{P}_{T} f \triangleq \frac{\Sigma_{i=1}^{T} f\left(X_{i}\right)}{T}
\end{gathered}
$$

s output points (coreset)

$$
\begin{gathered}
X_{1}^{\prime}, \ldots, X_{s}^{\prime} \\
\mathbb{P}_{\text {out }} f \triangleq \frac{\sum_{i=1}^{s} f\left(X_{i}^{\prime}\right)}{S}
\end{gathered}
$$

s (fewer) function evaluations

Efficient integration via distribution compression

T IID or MCMC points

$$
\begin{gathered}
X_{1}, \ldots, X_{T} \\
\mathbb{P}_{T} f \triangleq \frac{\Sigma_{i=1}^{T} f\left(X_{i}\right)}{T}
\end{gathered}
$$

Compress
s output points (coreset)

$$
\begin{gathered}
X_{1}^{\prime}, \ldots, X_{s}^{\prime} \\
\mathbb{P}_{\text {out }} f \triangleq \frac{\Sigma_{i=1}^{s} f\left(X_{i}^{\prime}\right)}{s}
\end{gathered}
$$

s (fewer) function evaluations

$$
\left|\mathbb{P}^{\star} f-\mathbb{P}_{T} f\right|=\Theta\left(T^{-1 / 2}\right)
$$

Efficient integration via distribution compression

T IID or MCMC points

$$
\begin{gathered}
X_{1}, \ldots, X_{T} \\
\mathbb{P}_{T} f \triangleq \frac{\Sigma_{i=1}^{T} f\left(X_{i}\right)}{T}
\end{gathered}
$$

$$
\left|\mathbb{P}^{\star} f-\mathbb{P}_{T} f\right|=\Theta\left(T^{-1 / 2}\right)
$$

Standard thinning

uniform sub-sampling
s output points (coreset)

$$
\begin{gathered}
X_{1}^{\prime}, \ldots, X_{s}^{\prime} \\
\mathbb{P}_{\text {out }} f \triangleq \frac{\sum_{i=1}^{s} f\left(X_{i}^{\prime}\right)}{S}
\end{gathered}
$$

s (fewer) function evaluations

$$
\left|\mathbb{P}^{\star} f-\mathbb{P}_{\text {out }} f\right|=\Theta\left(s^{-1 / 2}\right)
$$

$$
\left|\mathbb{P}^{\star} f-\mathbb{P}_{\text {out }} f\right|=\Theta\left(T^{-1 / 4}\right)
$$

$$
\text { when } s=T^{1 / 2}
$$

a million \rightarrow a thousand

TIID or MCMC points
a million \rightarrow a thousand
$\left|\mathbb{P}^{\star} f-\mathbb{P}_{T} f\right|=\Theta\left(T^{-1 / 2}\right) \xrightarrow{\text { Standard thinning }}\left|\mathbb{P}^{\star} f-\mathbb{P}_{\text {out }} f\right|=\Theta\left(T^{-1 / 4}\right)$

What is the best error we can hope for?

TIID or MCMC points
a million \rightarrow a thousand
$\left|\mathbb{P}^{\star} f-\mathbb{P}_{T} f\right|=\Theta\left(T^{-1 / 2}\right) \xrightarrow{\text { Standard thinning }}\left|\mathbb{P}^{\star} f-\mathbb{P}_{\text {out }} f\right|=\Theta\left(T^{-1 / 4}\right)$

What is the best error we can hope for?

T IID or MCMC points

$$
\left|\mathbb{P}^{\star} f-\mathbb{P}_{T} f\right|=\Theta\left(T^{-1 / 2}\right) \xrightarrow{\text { Standard thinning }}\left|\mathbb{P}^{\star} f-\mathbb{P}_{\text {out }} f\right|=\Theta\left(T^{-1 / 4}\right)
$$

$\Omega\left(T^{-1 / 2}\right)$ minimax lower bound

- If output = $T^{1 / 2}$ points
- If input = T IID points (any estimator)
[Tolstikhin+ '17, Philips+ '20]

Prior strategies for efficient integration

T IID or MCMC points

$$
\left|\mathbb{P}^{\star} f-\mathbb{P}_{T} f\right|=\Theta\left(T^{-1 / 2}\right) \xrightarrow{\text { Standard thinning }}\left|\mathbb{P}^{\star} f-\mathbb{P}_{\text {out }} f\right|=\Theta\left(T^{-1 / 4}\right)
$$

Prior strategies for efficient integration

TIID or MCMC points
a million \rightarrow a thousand

$$
\left|\mathbb{P}^{\star} f-\mathbb{P}_{T} f\right|=\Theta\left(T^{-1 / 2}\right) \xrightarrow{\text { Standard thinning }}\left|\mathbb{P}^{\star} f-\mathbb{P}_{\text {out }} f\right|=\Theta\left(T^{-1 / 4}\right)
$$

| Special \mathbb{P}^{\star} |
| :---: | :--- |
| - Uniform on $[0,1]^{d}$ |
| |
| special function class |\quad| Quasi Monte Carlo, Bayesian quadrature, |
| :--- |
| determinantal point processes, Haar thinning |
| [O'Hagan'91, Hickernell '98, Novak+'10, Liu+ '18, |
| Karvonen+'18, Dwivedi+'19, Belhadji ' 20] |

Prior strategies for efficient integration

TIID or MCMC points
a million \rightarrow a thousand
$T^{1 / 2}$ output points

$$
\left|\mathbb{P}^{\star} f-\mathbb{P}_{T} f\right|=\Theta\left(T^{-1 / 2}\right) \xrightarrow{\text { Standard thinning }}\left|\mathbb{P}^{\star} f-\mathbb{P}_{\text {out }} f\right|=\Theta\left(T^{-1 / 4}\right)
$$

Special \mathbb{P}^{\star}

- Uniform on $[0,1]^{d}$
- Bounded support \&

special function class \quad| $o\left(T^{-1 / 4}\right)$ error guarantee: |
| :--- |
| Quasi Monte Carlo, Bayesian quadrature, |
| determinantal point processes, Haar thinning |
| [O'Hagan '91, Hickernell '98, Novak+'10, Liu+ '18, |
| Karvonen+'18, Dwivedi'+'19, Belhadji ' '20] |

T IID or MCMC points
a million \rightarrow a thousand
$\left|\mathbb{P}^{\star} f-\mathbb{P}_{T} f\right|=\Theta\left(T^{-1 / 2}\right) \xrightarrow{\text { Standard thinning }}\left|\mathbb{P}^{\star} f-\mathbb{P}_{\text {out }} f\right|=\Theta\left(T^{-1 / 4}\right)$

A new practical \& provably near-optimal procedure

T IID or MCMC points

$$
\left|\mathbb{P}^{\star} f-\mathbb{P}_{T} f\right|=\Theta\left(T^{-1 / 2}\right) \xrightarrow{\text { Standard thinning }}\left|\mathbb{P}^{\star} f-\mathbb{P}_{\text {out }} f\right|=\Theta\left(T^{-1 / 4}\right)
$$

Visual comparison on $\mathbb{P}^{\star}=8$ mixture of Gaussian

64 iid input points

8 output points

Visual comparison on $\mathbb{P}^{\star}=8$ mixture of Gaussian
64 iid input points

8 output points

Quantitative measure: Worst-case error over a rich class

Quantitative measure: Worst-case error over a rich class

Namely, over the unit ball of a reproducing kernel Hilbert space (RKHS)

$$
\sup _{\|f\|_{\mathbf{k}} \leq 1}\left|\mathbb{P}^{\star} f-\mathbb{P}_{\text {out }} f\right|
$$

Quantitative measure: Worst-case error over a rich class

Namely, over the unit ball of a reproducing kernel Hilbert space (RKHS)

$$
\sup _{\|f\|_{\mathbf{k}} \leq 1}\left|\mathbb{P}^{\star} f-\mathbb{P}_{\text {out }} f\right|
$$

- Parameterized by a reproducing kernel \mathbf{k} any symmetric $(\mathbf{k}(x, y)=\mathbf{k}(y, x))$ and positive semidefinite function

Quantitative measure: Worst-case error over a rich class

Namely, over the unit ball of a reproducing kernel Hilbert space (RKHS)

$$
\sup _{\|f\|_{\mathbf{k}} \leq 1}\left|\mathbb{P}^{\star} f-\mathbb{P}_{\text {out }} f\right|
$$

- Parameterized by a reproducing kernel \mathbf{k} any symmetric $(\mathbf{k}(x, y)=\mathbf{k}(y, x))$ and positive semidefinite function
- Metrizes convergence in distribution for popular infinite-dimensional \mathbf{k}

Main result: A high probability bound for generic \mathbb{P}^{\star} and \mathbf{k}

Main result: A high probability bound for generic \mathbb{P}^{\star} and \mathbf{k}

Informal theorem: [Dwivedi and Mackey'21, '22 and Dwivedi-Shetty-Mackey '22]
Kernel thinning uses $O\left(T \log ^{3} T\right)$ kernel evaluations to output $T^{1 / 2}$ points, that with high probability satisfy

Main result: A high probability bound for generic \mathbb{P}^{\star} and \mathbf{k}

Informal theorem: [Dwivedi and Mackey'21,'22 and Dwivedi-Shetty-Mackey '22]
Kernel thinning uses $O\left(T \log ^{3} T\right)$ kernel evaluations to output $T^{1 / 2}$ points, that with high probability satisfy

- $\left|\mathbb{P}^{\star} f-\mathbb{P}_{\text {out }} f\right| \lesssim \sqrt{\frac{\log T}{T}} \cdot\|f\|_{\mathbf{k}} \sqrt{\|\mathbf{k}\|_{\infty}}$ for a fixed f in the RKHS of \mathbf{k} (any kernel) when $\left|\mathbb{P}^{\star} f-\mathbb{P}_{T} f\right| \lesssim T^{-1 / 2}$
- A near-quadratic gain over $T^{-1 / 4}$ standard thinning error

Main result: A high probability bound for generic \mathbb{P}^{\star} and \mathbf{k}

Informal theorem: [Dwivedi and Mackey'21, '22 and Dwivedi-Shetty-Mackey '22]
Kernel thinning uses $O\left(T \log ^{3} T\right)$ kernel evaluations to output $T^{1 / 2}$ points, that with high probability satisfy

- $\left|\mathbb{P}^{\star} f-\mathbb{P}_{\text {out }} f\right| \lesssim \sqrt{\frac{\log T}{T}} \cdot\|f\|_{\mathbf{k}} \sqrt{\|\mathbf{k}\|_{\infty}}$ for a fixed f in the RKHS of \mathbf{k} (any kernel)
- $\sup _{\|f\|_{\mathrm{k}} \leq 1}\left|\mathbb{P}^{\star} f-\mathbb{P}_{\text {out }} f\right| \lesssim \sqrt{\frac{\log ^{d / 2+1} T}{T}}$ Sub-gaussian \mathbb{P}^{\star} and \mathbf{k} on \mathbb{R}^{d} (Gaussian)

$$
\lesssim \sqrt{\frac{\log ^{d+1} T}{T}} \text { Sub-exponential } \mathbb{P}^{\star} \text { and } \mathbf{k} \text { on } \mathbb{R}^{d} \text { (Matérn) }
$$

- A near-quadratic gain over $T^{-1 / 4}$ standard thinning error
- Matches minimax lower bounds $T^{-1 / 2}$ up to log factors

Kernel thinning

$$
\begin{gathered}
\text { points } \\
X_{1}, X_{2}, \ldots, X_{T}
\end{gathered} \rightarrow \text { Kernel } \rightarrow \begin{gathered}
\text { functions in RKHS } \\
v_{1}, v_{2}, \ldots, v_{T}
\end{gathered}
$$

Kernel thinning \equiv Recursive halving via kernel evaluations

$$
\begin{gathered}
\text { points } \\
X_{1}, X_{2}, \ldots, X_{T}
\end{gathered} \rightarrow \text { Kernel } \rightarrow \begin{gathered}
\text { functions in RKHS } \\
v_{1}, v_{2}, \ldots, v_{T}
\end{gathered}
$$

$\underset{T \text { points }}{\text { Input }} \rightarrow \underset{\text { Kernel }}{\text { Kalving }} \rightarrow \underset{\text { points }}{T / 2} \rightarrow \underset{\substack{\text { Kernel halving } \\ \text { rounds }}}{O(\log T)} \rightarrow \underset{\sqrt{T} \text { points }}{\text { Output }}$ + some refinement

Kernel halving

$$
\begin{gathered}
\text { points } \\
X_{1}, X_{2}, \ldots, X_{T} \rightarrow \text { Kernel } \rightarrow \begin{array}{c}
\text { functions in RKHS } \\
v_{1}, v_{2}, \ldots, v_{T}
\end{array}
\end{gathered}
$$

$v_{1}, v_{2}, \ldots, v_{T} \rightarrow \begin{gathered}\text { Kernel } \\ \text { halving }\end{gathered} \rightarrow v_{1}^{\prime}, v_{2}^{\prime}, \ldots, v_{T / 2}^{\prime}$

$$
\left|\frac{\Sigma_{i=1}^{T} v_{i}}{T}-\frac{\Sigma_{i=1}^{T / 2} v_{i}^{\prime}}{T / 2}\right|=\text { small }
$$

Kernel halving \equiv Discrepancy minimization problem

Kernel halving \equiv Discrepancy minimization problem

$$
\begin{aligned}
& \begin{array}{c}
\text { points } \\
X_{1}, X_{2}, \ldots, X_{T}
\end{array} \rightarrow \text { Kernel } \rightarrow \begin{array}{c}
\text { functions in RKHS } \\
v_{1}, v_{2}, \ldots, v_{T}
\end{array} \\
& \begin{array}{c}
v_{1}, v_{2}, \ldots, v_{T} \rightarrow \begin{array}{c}
\text { Kernel } \\
\text { halving }
\end{array} \rightarrow v_{1}^{\prime}, v_{2}^{\prime}, \ldots, v_{T / 2}^{\prime}
\end{array} \begin{array}{c}
\text { Assign } \varepsilon_{i} \in\{-1,1\} \text { to } v_{i} \\
\text { such that }\left|\sum_{i=1}^{T} \varepsilon_{i} v_{i}\right| \text { is small } \\
\text { \& output points with } \varepsilon_{i}=-1
\end{array}
\end{aligned}
$$

Kernel halving \equiv Discrepancy minimization problem

$$
\begin{aligned}
& \begin{array}{c}
\text { points } \\
X_{1}, X_{2}, \ldots, X_{T}
\end{array} \rightarrow \text { Kernel } \rightarrow \begin{array}{c}
\text { functions in RKHS } \\
v_{1}, v_{2}, \ldots, v_{T}
\end{array}
\end{aligned}
$$

Kernel halving \equiv Discrepancy minimization problem

$$
\begin{aligned}
& \begin{array}{c}
\text { points } \\
X_{1}, X_{2}, \ldots, X_{T}
\end{array} \rightarrow \begin{array}{c}
\text { functions in RKHS } \\
v_{1}, v_{2}, \ldots, v_{T}
\end{array}
\end{aligned}
$$

Kernel halving \equiv Discrepancy minimization problem

KT intuition: IID vs correlated signs
$\left|\Sigma_{i=1}^{T} \varepsilon_{i} v_{i}\right|$ is small

KT intuition: IID vs correlated signs

$$
\left|\Sigma_{i=1}^{T} \varepsilon_{i} v_{i}\right| \text { is small }
$$
$\varepsilon_{i}= \pm 1$ with equal probability

KT intuition: IID vs correlated signs

$$
\begin{aligned}
& \qquad \frac{\left|\Sigma_{i=1}^{T} \varepsilon_{i} v_{i}\right| \text { is small }}{\varepsilon_{i}}=\begin{aligned}
& = \pm 1 \text { with equal probability } \\
\sigma_{T}^{2} & =\sigma_{T-1}^{2}+v_{T}^{2} \\
\left|\Sigma_{i=1}^{T} \varepsilon_{i} v_{i}\right| & =O\left(\sigma_{T}\right)=O\left(T^{1 / 2}\right)
\end{aligned}
\end{aligned}
$$

Standard thinning

KT intuition: IID vs correlated signs

$$
\begin{gathered}
\qquad\left|\Sigma_{i=1}^{T} \varepsilon_{i} v_{i}\right| \text { is small } \\
\varepsilon_{i}= \pm 1 \text { with equal probability } \\
\sigma_{T}^{2}=\sigma_{T-1}^{2}+v_{T}^{2} \\
\left|\Sigma_{i=1}^{T} \varepsilon_{i} v_{i}\right|=O\left(\sigma_{T}\right)=O\left(T^{1 / 2}\right) \\
\text { Standard thinning }
\end{gathered}
$$

KT intuition: IID vs correlated signs

$$
\begin{array}{c|}
\left|\Sigma_{i=1}^{T} \varepsilon_{i} v_{i}\right| \text { is small } \\
\varepsilon_{i}= \pm 1 \text { with equal probability } \\
\sigma_{T}^{2}=\sigma_{T-1}^{2}+v_{T}^{2} \\
\left|\Sigma_{i=1}^{T} \varepsilon_{i} v_{i}\right|=O\left(\sigma_{T}\right)=O\left(T^{1 / 2}\right) \\
\varepsilon_{i} \text { negatively correlated with } \sum_{j=1}^{i-1} \varepsilon_{j} v_{j} \\
\text { Standard thinning }
\end{array}
$$

KT intuition: IID vs correlated signs

$$
\begin{array}{c|}
\left|\Sigma_{i=1}^{T} \varepsilon_{i} v_{i}\right| \text { is small } \\
\varepsilon_{i}= \pm 1 \text { with equal probability } \\
\sigma_{T}^{2}=\sigma_{T-1}^{2}+v_{T}^{2} \\
\left|\Sigma_{i=1}^{T} \varepsilon_{i} v_{i}\right|=O\left(\sigma_{T}\right)=O\left(T^{1 / 2}\right) \\
\varepsilon_{i} \text { negatively correlated with } \sum_{j=1}^{i-1} \varepsilon_{j} v_{j} \\
\text { Standard thinning }
\end{array}
$$

KT intuition: IID vs correlated signs

$$
\left.\begin{array}{c|}
\left|\Sigma_{i=1}^{T} \varepsilon_{i} v_{i}\right| \text { is small } \\
\varepsilon_{i}= \pm 1 \text { with equal probability } \\
\sigma_{T}^{2}=\sigma_{T-1}^{2}+v_{T}^{2} \\
\left|\Sigma_{i=1}^{T} \varepsilon_{i} v_{i}\right|=O\left(\sigma_{T}\right)=O\left(T^{1 / 2}\right) \\
\\
\text { Standard thinning }
\end{array} \right\rvert\, \begin{array}{cc}
\sigma_{T}^{2} \leq \beta \sigma_{T-1}^{2}+v_{T}^{2} \text { for } \beta<1 \\
\left|\Sigma_{i=1}^{T} \varepsilon_{i} v_{i}\right|=O\left(\sigma_{T}\right)=O(\sqrt{\log T}) \\
\text { Kernel thinning }
\end{array}
$$

KT intuition: IID vs correlated signs

$$
\begin{aligned}
& \left|\Sigma_{i=1}^{T} \varepsilon_{i} v_{i}\right| \text { is small } \\
& \varepsilon_{i}= \pm 1 \text { with equal probability } \\
& \sigma_{T}^{2}=\sigma_{T-1}^{2}+v_{T}^{2} \\
& \left|\Sigma_{i=1}^{T} \varepsilon_{i} v_{i}\right|=O\left(\sigma_{T}\right)=O\left(T^{1 / 2}\right) \\
& \text { Standard thinning } \\
& \varepsilon_{i} \text { negatively correlated with } \sum_{j=1}^{i-1} \varepsilon_{j} v_{j} \\
& \sigma_{T}^{2} \leq \beta \sigma_{T-1}^{2}+v_{T}^{2} \text { for } \beta<1 \\
& \left|\Sigma_{i=1}^{T} \varepsilon_{i} v_{i}\right|=O\left(\sigma_{T}\right)=O(\sqrt{\log T}) \\
& \text { Kernel thinning } \\
& \text { Discrepancy minimization } \\
& \text { [... Spencer '77, Banaszczyk '98, '12, Eldan+ '18, }
\end{aligned}
$$

Is $K T$ better practically? Gaussian \mathbb{P}^{\star} in \mathbb{R}^{d}

iid input, Gaussian kernel

Output size \sqrt{T}

Is $K T$ better practically? Gaussian \mathbb{P}^{\star} in \mathbb{R}^{d}

iid input, Gaussian kernel

Is KT better practically? Gaussian \mathbb{P}^{\star} in \mathbb{R}^{d}

iid input, Gaussian kernel

Is $K T$ better practically? Gaussian \mathbb{P}^{\star} in \mathbb{R}^{d}

iid input, Gaussian kernel

Significant gains in $d=100$ with just 8 output points

KT on MCMC points for \mathbb{P}^{\star} in experiments $(d=38)$

$$
{ }^{\dagger} \text { Input }=2 \mathrm{MCMC} \text { runs on } 2 \text { posteriors } \mathbb{P}^{\star}, \text { Gaussian kernel }
$$

KT on MCMC points for \mathbb{P}^{\star} in experiments $(d=38)$

$$
{ }^{\dagger} \text { Input }=2 \mathrm{MCMC} \text { runs on } 2 \text { posteriors } \mathbb{P}^{\star}, \text { Gaussian kernel }
$$

KT on MCMC points for \mathbb{P}^{\star} in experiments $(d=38)$

\dagger Input $=2 \mathrm{MCMC}$ runs on 2 posteriors \mathbb{P}^{\star}, Gaussian kernel

Cardiology 1

Cardiology 2

Cardiology 3

Cardiology 4

Standard thinning does well but KT provides further improvement \& offers 50\% computational savings (each point ~ 4 CPU weeks)

Kernel thinning: Near-optimal compression in near-linear time

Kernel thinning: Near-optimal compression in near-linear time

 R python pip install goodpointsThin 100k points in 100 dimensions in 10mins

From HeartSteps

From HeartSteps

Sequential
experiments

Uncertainty
propagation
propagation
to HeartBeats

Uncertainty
propagation
propagation
to HeartBeats

Personalized simulations by thinning neighborhoods

Quadratic gains via discrepancy minimization

Uncertainty
propagation
to HeartBeats

Personalized simulations by thinning neighborhoods

Quadratic gains via discrepancy minimization

Personalized inference by averaging neighborhoods

Quadratic gains via double robustness

experiments

Uncertainty
propagation

to HeartBeats

Personalized simulations by thinning neighborhoods

Quadratic gains via discrepancy minimization

\uparrow

Sequential
experiments

Model
88

Deep dive into personalization by a

 reinforcement learning algorithm

Dwivedi*-Zhang*-Chhabria-Klasnja-
Sequential
experiments

Stable discovery of interpretable subgroups in
randomized studies via calibration

Dwivedi*-Tan*-Park-Wei-Horgan-Madigan-Yu '20

Stable discovery of interpretable subgroups in

On counterfactual inference with unobserved confounding via exponential family

Shah-Dwivedi-Shah-Wornell '22
randomized studies via calibration

Dwivedi*-Tan*-Park-Wei-Horgan-Madigan-Yu '20

Stable discovery of interpretable subgroups in

On counterfactual inference with unobserved confounding via exponential family

Shah-Dwivedi-Shah-Wornell '22
randomized studies via calibration

Dwivedi*-Tan*-Park-Wei-Horgan-Madigan-Yu '20

Deep dive into personalization by a reinforcement learning algorithm

Dwivedi*-Zhang*-Chhabria-KlasnjaMurphy '23

Fast and powerful kernel testing via distribution compression

Shetty-Dwivedi-Mackey '22,
Domingo Enrich-Dwivedi-Mackey '23

Stable discovery of interpretable subgroups in

On counterfactual inference with unobserved confounding via exponential family

Shah-Dwivedi-Shah-Wornell '22
randomized studies via calibration

Dwivedi*-Tan*-Park-Wei-Horgan-Madigan-Yu '20

Deep dive into personalization by a reinforcement learning algorithm

Dwivedi*-Zhang*-Chhabria-KlasnjaMurphy '23

Fast and powerful kernel testing via distribution compression

Shetty-Dwivedi-Mackey '22,
Domingo Enrich-Dwivedi-Mackey '22

Mixing time guarantees for MCMC algorithms in high dimensions

Stable discovery of interpretable subgroups in

On counterfactual inference with unobserved confounding via exponential family

Shah-Dwivedi-Shah-Wornell '22
randomized studies via calibration

Dwivedi*-Tan*-Park-Wei-Horgan-Madigan-Yu '20

Deep dive into personalization by a reinforcement learning algorithm

Dwivedi*-Zhang*-Chhabria-KlasnjaMurphy '23

Fast and powerful kernel testing via distribution compression

Shetty-Dwivedi-Mackey '22,
Domingo Enrich-Dwivedi-Mackey '22

Statistical-computational tradeoffs for optimization algorithms

Mixing time guarantees for MCMC algorithms in high dimensions

Dwivedi*-Ho*-Khamaru*-Wainwright-Jordan-Yu '19, '20, '21, '22+

Stable discovery of interpretable subgroups in

On counterfactual inference with unobserved confounding via exponential family

Shah-Dwivedi-Shah-Wornell '22
randomized studies via calibration

Dwivedi*-Tan*-Park-Wei-Horgan-Madigan-Yu '20

Deep dive into personalization by a reinforcement learning algorithm

Dwivedi*-Zhang*-Chhabria-KlasnjaMurphy '23

Fast and powerful kernel testing via distribution compression

Shetty-Dwivedi-Mackey '22,
Domingo Enrich-Dwivedi-Mackey '22

Mixing time guarantees for MCMC algorithms in high dimensions

Dwivedi*-Ho*-Khamaru*-Wainwright-Jordan-Yu '19, '20, '21, '22+

Thank you!

Appendix

Propensity-adjusted user nearest neighbors estimator for $\theta_{i, t}^{(a)}$

Distance between two users i and j under treatment $a=$ squared distance between their outcomes averaged over all times when both treated with a

$$
\rho_{i, j}^{(a)}=\frac{\sum_{t^{\prime}=1}^{T}\left(Y_{i, t^{\prime}}-Y_{j, t^{\prime}}\right)^{2} \cdot \mathbf{1}\left(A_{i, t}=A_{j, t^{\prime}}=a\right)}{\sum_{t^{\prime}=1}^{T} \mathbf{1}\left(A_{i, t^{\prime}}=A_{j, t^{\prime}}=a\right)}
$$

Estimate $=$ Averaged outcome across user neighbors treated with a at time t

Propensity-adjusted user nearest neighbors estimator for $\theta_{i, t}^{(a)}$

Distance between two users i and j under treatment $a=$ squared distance between their outcomes averaged over all times when both treated with a

$$
\rho_{i, j}^{(a)}=\frac{\sum_{t^{\prime}=1}^{T}\left(Y_{i, t^{\prime}}-Y_{j, t^{\prime}}\right)^{2} \cdot \mathbf{1}\left(A_{i, t^{\prime}}=A_{j, t^{\prime}}=a\right)}{\sum_{t^{\prime}=1}^{T} \mathbf{1}\left(A_{i, t^{\prime}}=A_{j, t^{\prime}}=a\right)} \rightarrow \frac{\sum_{t^{\prime}=1}^{T}\left(Y_{i, t^{\prime}}-Y_{j, t^{\prime}}\right)^{2} \cdot \frac{\mathbf{1}\left(A_{i, t^{\prime}}=A_{j, t^{\prime}}=a\right)}{\mathbb{P}\left(1\left(A_{i, t^{\prime}}=A_{j, t^{\prime}}=a\right) \mid \mathscr{F}_{\left.t^{\prime}\right)}\right)}}{\sum_{t^{\prime}=1}^{T} \frac{\mathbf{1}\left(A_{i, t^{\prime}}=A_{j, t^{\prime}}=a\right)}{\mathbb{P}\left(1\left(A_{i, t^{\prime}}=A_{j, t^{\prime}}=a\right) \mid \mathscr{F}_{t^{\prime}}\right)}}
$$

Estimate $=$ Averaged outcome across user neighbors treated with a at time t

Propensity-adjusted user nearest neighbors estimator for $\theta_{i, t}^{(a)}$

Distance between two users i and j under treatment $a=$ squared distance between their outcomes averaged over all times when both treated with a

$$
\rho_{i, j}^{(a)}=\frac{\sum_{t^{\prime}=1}^{T}\left(Y_{i, t^{\prime}} Y_{j, t^{\prime}}\right)^{2} \cdot \mathbf{1}\left(A_{i, t^{\prime}}=A_{j, t^{\prime}}=a\right)}{\sum_{t^{\prime}=1}^{T} \mathbf{1}\left(A_{i, t^{\prime}}=A_{j, t^{\prime}}=a\right)} \rightarrow \frac{\sum_{t^{\prime}=1}^{T}\left(Y_{i, t^{\prime}}-Y_{j, t^{\prime}}\right)^{2} \cdot \frac{\mathbf{1}\left(A_{i, t^{\prime}}=A_{j, t^{\prime}}=a\right)}{\mathbb{P}\left(1\left(A_{i, t^{\prime}}=A_{j, t^{\prime}}=a\right) \mid \mathscr{F}_{\left.t^{\prime}\right)}\right)}}{\sum_{t^{\prime}=1}^{T} \frac{\mathbf{1}\left(A_{i, t^{\prime}}=A_{j, t^{\prime}}=a\right)}{\mathbb{P}\left(1\left(A_{i, t^{\prime}}=A_{j, t^{\prime}}=a\right) \mid \mathscr{F}_{\left.t^{\prime}\right)}\right)}}
$$

Estimate $=$ Averaged outcome across user neighbors treated with a at time t

Allows non-iid time factors albeit with worse variance

IID signs

VS
 Correlated signs

$$
\left|\Sigma_{i=1}^{T} \varepsilon_{i} \nu_{i}\right| \text { is small }
$$

$$
\begin{aligned}
\varepsilon_{i}= & \left\{\begin{array}{l}
+1 \text { w.p. } 0.5 \\
-1 \\
\text { w.p. } 0.5
\end{array}\right. \\
\bullet \sigma_{T}^{2} & \triangleq \operatorname{Var}\left(\Sigma_{i=1}^{T-1} \varepsilon_{i} v_{i}+\varepsilon_{T} v_{T}\right) \\
& =\operatorname{Var}\left(\Sigma_{i=1}^{T-1} \varepsilon_{i} v_{i}\right)+\operatorname{Var}\left(\varepsilon_{T} v_{T}\right)+2 \mathbb{E}\left[\varepsilon_{T} \psi_{T-1} v_{T}\right] \\
& =\sigma_{T-1}^{2}+v_{T}^{2}=\Sigma_{i=1}^{T} v_{T}^{2}=O(T)
\end{aligned}
$$

- $\left|\Sigma_{i=1}^{T} \varepsilon_{i} v_{i}\right|=O\left(\sigma_{T}\right)=O\left(T^{1 / 2}\right)$

$$
\begin{aligned}
& \varepsilon_{i}=\left\{\begin{array} { l }
{ + 1 \text { w.p. } 0 . 5 (1 - \psi _ { i - 1 } v _ { i } / a) } \\
{ - 1 \text { w.p. } 0 . 5 (1 + \psi _ { i - 1 } v _ { i } / a) }
\end{array} \quad \left[\begin{array}{l}
\mathbb{E}\left[\varepsilon_{i} \psi_{i-1} v_{i}\right]<0
\end{array}\right.\right. \\
& \bullet \sigma_{T}^{2} \\
&=\operatorname{Var}\left(\Sigma_{i=1}^{T-1} \varepsilon_{i} v_{i}\right)+\operatorname{Var}\left(\varepsilon_{T} v_{T}\right)-2 \mathbb{E}\left[\psi_{T-1}^{2} v_{T}^{2} / a\right] \\
& \leq \beta \sigma_{T-1}^{2}+v_{T}^{2} \text { for some } \beta<1^{\dagger} \\
& \leq a /(1-\beta) \leq \log T
\end{aligned}
$$

- $\left|\Sigma_{i=1}^{T} \varepsilon_{i} v_{i}\right|=O\left(\sigma_{T}\right)=O(\sqrt{\log T})$

Kernel thinning

Non-linear double/squared robustness

- $f(u, 0)=f(0,0)+f_{u}^{\prime}(0,0) u+\quad+f_{u u}^{\prime \prime}(\tilde{u}, 0) u^{2}$
- $f(0, v)=f(0,0)+\quad+f_{v}^{\prime}(0,0) v+f_{v v}^{\prime \prime}(0, \hat{v}) v^{2}$
- $f(u, v)=f(0,0)+f_{u}^{\prime}(0,0) u+f_{v}^{\prime}(0,0) v+[u, v] \nabla^{2} f(\tilde{u}, \tilde{v})\left[\begin{array}{l}u \\ v\end{array}\right]$
- $f(u, 0)+f(0, v)-f(u, v)=f(0,0)+O\left((u+v)^{2}\right) \Longrightarrow$ Error $=\max \left\{u^{2}, v^{2}\right\}$

Additional results for Personalized Heartsteps

Additional results for Personalized Heartsteps

Additional results for Personalized Heartsteps

Histogram across 20 users at 50 times for $a=1$ (test data)

