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Talk outline

1 Challenges with optimization methods in parametric statistical models

2 Population to sample analysis framework
Contraction of population operator
Stability of sample operator

3 Convergence of optimization methods under different settings of operators
Stable and fast operators
Stable and slow operators
Unstable and fast operators
Unstable and slow operators

Main story

Unstable optimization algorithms can be preferred to stable algorithms in some
statistical settings.



Parametric statistical models

Given a random sample of size n

X1, . . . , Xn ∼ fθ?(x)

Known: family of distributions {fθ(x), θ ∈ Θ}
Unknown: θ?
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Estimation methods

Standard approaches to estimate θ? include M-estimators, methods of
moments, etc.

Challenge: fθ is generally non-convex function and optimal solutions from
these approaches do not admit closed-forms

Solution: Optimization algorithms are used to approximate θ?
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Fundamental questions

Under what conditions does an optimization algorithm achieve a statistically
optimal rate?

When is an unstable optimization algorithm, such as Newton’s method,
preferred to a stable algorithm, such as gradient descent method?
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First example: Non-linear regression model

{(Xi, Yi)}ni=1 are generated from a noisy non-linear regression model of the
form

Yi = g
(
X>i θ

?
)

+ ξi, for i = 1, . . . , n.

ξi is a zero-mean noise variable with variance σ2

g(t) = t2 for t ∈ R
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Behavior of optimization algorithms
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(a) (b)

The behavior of gradient descent (GD), cubic-regularized Newton’s method
(CNM), and the Newton’s method (NM) for the regression model when θ? = 0.

All the algorithms achieve optimal statistical rates n−1/4

Newton’s method takes least number of steps (≈ log(n)) while gradient
descent takes significantly larger number of steps (≈ √n)
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Second example: Mixture model

Two-component Gaussian mixtures:

I True model: 1
2N (−θ?, Id) + 1

2N (θ?, Id)

I Fitted model: 1
2N (−θ, Id) + 1

2N (θ, Id)
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Behavior of optimization algorithms
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(a) (b)

The behavior of EM algorithm and the Newton’s method (NM) for the mixture
model when θ? = 0.

EM and Newton’s method achieve optimal statistical rates n−1/4

Newton’s method takes ≈ log(n) steps to converge while EM algorithm
takes significantly larger number of steps (≈ √n)
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General framework

Fn: the empirical operator

I Example: Fn(θ) = θ − η∇fn(θ) where fn is sample log-likelihood
function

F : the population operator

I Example: F (θ) = θ − η∇f(θ) where f is population log-likelihood
function, i.e., the limit of fn when n→∞

θ?: fixed point of F , i.e., F (θ?) = θ?

θt+1
n = Fn(θtn) for t = 1, 2, . . .

Question

Under which conditions, {θtn} approaches a suitably defined neighborhood of θ??
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Population to sample analysis

Triangle inequality:

‖θt+1
n − θ?‖ = ‖Fn(θtn)− θ?‖ ≤ ‖F (θtn)− θ?‖

︸ ︷︷ ︸
A

+ ‖Fn(θtn)− F (θtn)‖
︸ ︷︷ ︸

B

A: Contraction of population operator

B: Deviation between sample and population operators
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Contraction of population operator F

There are two types of contractions:

Fast convergence: For κ ∈ (0, 1), F is FAST(κ)-convergent if

‖F t(θ0)− θ?‖ ≤ κt ‖θ0 − θ?‖ for all t = 1, 2, . . .

Slow convergence: For β > 0, F is SLOW(β)-convergent if

‖F t(θ0)− θ?‖ ≤ c

tβ
for all t = 1, 2, . . .
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Example: Fast versus slow convergence

minθ f(θ) = θ2p

2p for some p ≥ 1

Gradient descent algorithm:

F (θ) = θ − η∇f(θ) = θ
(
1− ηθ2p−2

)

When p = 1, F is FAST(κ)-convergent algorithm with κ = 1− η
When p ≥ 2, F is SLOW(β)-convergent with β = 1

2p−2
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Deviation between sample and population operators

There are two types of deviations:

Stability condition: For γ ≥ 0, Fn is STA(γ)-stable with noise ε(·) if

P
[

sup
θ∈Ball(θ?,r)

‖Fn(θ)− F (θ)‖ - min
{
rγε(n, δ), r

}]
≥ 1− δ

for any r > 0

Instability condition: For γ < 0, Fn is UNS(γ)-unstable with noise ε(·) if

P

[
sup

θ∈Annulus(θ?,r,ρout)

‖Fn(θ)− F (θ)‖ ≤ ε(n, δ) max

{
1

r|γ|
, ρout

}]
≥ 1− δ

for any radius r ≥ ρin.
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Example of stable condition

minθ fn(θ) = θ4

4 + w
2
√
n
θ2 where w ∼ N(0, σ2)

Gradient descent:

I Sample operator: Fn(θ) = θ
(

1− ηθ2 − η w√
n

)

I Population operator: F (θ) = θ
(
1− ηθ2

)

With probability 1− δ,

|Fn(θ)− F (θ)| = η|θ| |w|√
n
- |θ|

√
log(1/δ)

n

=⇒ Fn is STA(γ)-stable with γ = 1 and noise ε(n, δ) =
√

log(1/δ)/n
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Example of unstable condition

minθ fn(θ) = θ4

4 + w
2
√
n
θ2 where w ∼ N(0, σ2)

Newton’s method:

I Sample operator: Fn(θ) = θ − θ3+wθ/
√
n

3θ2+w/
√
n

I Population operator: F (θ) = θ − θ3

3θ2

With probability 1− δ, when |θ| %
(

log(1/δ)
n

)1/4
:

|Fn(θ)− F (θ)| - 1

|θ|

√
log(1/δ)

n

=⇒ Fn is UNS(γ)-unstable with parameter γ = −1 and noise
ε(n, δ) =

√
log(1/δ)/n
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General theory: Stable and fast operators

The operator F is FAST(κ)-convergent

The empirical operator Fn is STA(γ)-stable with noise ε(n, δ) for some
γ ≥ 0

Theorem 1 (Balakrishnan et al., 2017)

Under suitable initialization, the sequence θt+1
n = Fn(θtn) satisfies

‖θtn − θ?‖ - ε(n, δ) when t % log(1/ε(n, δ)).

Furthermore, this bound is tight.
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Example of stable and fast operators

{(Xi, Yi)}ni=1 are generated from a noisy non-linear regression model of the
form

Yi = (Xiθ
?)2 + ξi, for i = 1, . . . , n.

where |θ?| >>> 1

ξi ∼ N (0, 1) and Xi ∼ N (0, 1)

We use gradient descent method (GD) to the least-squares loss
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Example of stable and fast operators

Population GD operator FGD is FAST( 1
2 )-convergent

Sample GD operator FGD
n is STA(1)-stable with noise ε(n, δ) =

√
log4(n/δ)

n

Under suitable initialization, the sequence θt+1
n = FGD

n (θtn) satisfies

|θtn − θ?| - n−1/2 when t % log(n)
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General theory: Stable and slow operators

The population operator F is 1-Lipschitz and is SLOW(β)-convergent

The empirical operator Fn is STA(γ)-stable for some γ ∈ [0, (1 + β)−1)

Theorem 2

Under suitable initialization, the sequence θt+1
n = Fn(θtn) satisfies

‖θtn − θ?‖ - [ε(n, δ)]
β

1+β−γβ when t % ε(n, δ)−
1

1+β−γβ .

Furthermore, this bound is tight.
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Outline of proof: Epoch-based argument

Assume θ0 the starting point for epoch ` and r = ‖θ? − θ0‖ = ε(n, δ)λ`

Slow convergence of population iterates: ‖F t(θ0)− θ?‖ - t−β

Stability of sample operator: ‖F tn(θ0)− F t(θ0)‖ - t · rγ · ε

Goal: At the end of epoch `, we want to find suitable t and λ`+1 such that
‖F tn(θ0)− θ?‖ - ελ`+1
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Outline of proof: Epoch-based argument

F 2(✓0)F t(✓0)
F 1(✓0)

F t
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t��
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Proof sketch for epoch ̀

kF t
n(✓0) � ✓?k  kF t

n(✓0) � F t(✓0)k + kF t(✓0) � ✓?k  tr�" +
1
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, and ⌫? � �`  ↵ for all ` � O(log(1/↵))
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Example of stable and slow operators

{(Xi, Yi)}ni=1 are generated from a noisy non-linear regression model of the
form

Yi = (Xiθ
?)2 + ξi, for i = 1, . . . , n

where θ? = 0

ξi ∼ N (0, 1) and Xi ∼ N (0, 1)

We apply gradient descent method (GD) to the least-squares loss
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Example of stable and slow operators

Population GD operator:

FGD(θ) = θ
[
1− 6ηθ2

]

=⇒ FGD is SLOW( 1
2 )-convergent as η ∈ (0, 16 ]

Sample GD operator:

FGD
n (θ) = θ − η

(
2

n

n∑

i=1

X4
i θ

3 − 2

n

n∑

i=1

YiX
2
i θ

)

=⇒ FGD
n is STA(1)-stable with noise ε(n, δ) =

√
log4(n/δ)

n

Under suitable initialization, the sequence θt+1
n = FGD

n (θtn) satisfies

|θtn − θ?| - n−1/4 when t %
√
n
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General theory: Unstable and fast operators

The population operator F is FAST(κ)-convergent

The empirical operator Fn is UNS(γ)-unstable over the annulus A(θ?, ρ̃n, ρ)
for some γ < 0

Theorem 3

Under suitable initialization, the sequence θt+1
n = Fn(θtn) satisfies

min
k∈{0,1,...,t}

‖θkn − θ?‖ - max
{

[ε(n, δ)]
1

1+|γ| , ρ̃n

}
when t % log(1/ε(n, δ)).

Furthermore, this bound is tight.
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Outline of proof

Assume that ‖θtn − θ?‖ > [ε(n, δ)]
1

1+|γ| for all t - log(1/ε(n, δ))

As F is FAST(κ)-convergent and Fn is UNS(γ)-unstable,

‖θt+1
n − θ?‖ ≤ ‖Fn(θtn)− F (θtn)‖+ ‖F (θtn)− θ?‖

≤ ε(n, δ) max

{
1

[ε(n, δ)]
|γ|

1+|γ|

, ρ

}
+ κ · ‖θtn − θ?‖

. . .

≤ ε(n, δ) max

{
1

[ε(n, δ)]
|γ|

1+|γ|

, ρ

}
(1 + κ+ . . .+ κt−1)

+ κt · ‖θ0n − θ?‖
- [ε(n, δ)]

1
1+|γ| ,

when t % log(1/ε(n, δ))
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Necessity of the minimum
We consider the following example:

L(θ) = −θ4(θ − 2)2 and Ln(θ) = −
(
θ4 − θ2√

n

)
(θ − 2)2

−1 0 1 2
θ →

−1.5

−1.0

−0.5

0.0

0.5

θ?
ρ̃

ρ

θ0

θ1

θ10

θ100θ0
θ10

Ln(θ)

L(θ)

Newton iterates

Newton iterates

When the initialization is too close to θ? (red diamonds), Newton’s iterates
jump far away from θ? and converge to another fixed point

When the initialization is in A(θ?, ρ̃, ρ), the Newton iterates (blue circles) do
not leave this annulus and converge to a small neighborhood of θ?
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Additional regularity condition to remove the minimum

The population operator F is FAST(κ)-convergent

The empirical operator Fn is UNS(γ)-unstable over the annulus A(θ?, ρ̃n, ρ)
for some γ < 0

There exists a constant C such that the sequence θtn = F tn(θ0n) satisfies:

‖θt+1
n − θ?‖ ≤ Cρ̃ whenever ‖θtn − θ?‖ ≤ ρ̃,

where ρ̃ = max
{

[ε(n, δ)]
1

1+|γ| , ρ̃n

}

Proposition 4

Under suitable initialization, the sequence θt+1
n = Fn(θtn) satisfies

‖θtn − θ?‖ - max
{

[ε(n, δ)]
1

1+|γ| , ρ̃n

}
when t % log(1/ε(n, δ)).

Furthermore, this bound is tight.
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Example of unstable and fast operators

{(Xi, Yi)}ni=1 are generated from a noisy non-linear regression model of the
form

Yi = (Xiθ
?)2 + ξi, for i = 1, . . . , n

where θ? = 0

ξi ∼ N (0, 1) and Xi ∼ N (0, 1)

We apply Newton’s method (NM) to the least-squares loss
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Example of unstable and slow operators

Population NM operator:

FNM(θ) = θ − θ3

3θ2
=

2

3
θ

=⇒ FNM is FAST( 2
3 )-convergent

Sample NM operator:

FGD
n (θ) = θ −

(
1
n

∑n
i=1X

4
i

)
θ3 −

(
1
n

∑n
i=1 YiX

2
i

)
θ(

3
n

∑n
i=1X

4
i

)
θ2 − 1

n

∑n
i=1 YiX

2
i

=⇒ FNM
n is UNS(−1)-unstable over the annulus A(θ?, ρ̃n, 1) with

ρ̃n � log(n/δ)/n1/4
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Example of unstable and slow operators

FNM is FAST( 2
3 )-convergent

FNM
n is UNS(−1)-unstable over the annulus A(θ?, ρ̃n, 1) with

ρ̃n � log(n/δ)/n1/4

Additional regularity condition:

∣∣FNM
n (θ)

∣∣ ≥ |θ∗n|

for all |θ| ∈ [|θ∗n| , 1] where θ∗n is global solution of least-squares loss

Under suitable initialization, the sequence θt+1
n = FNM

n (θtn) satisfies

|θtn − θ?| - n−1/4 when t % log(n)
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General theory: Unstable and slow operators

The population operator F is 1-Lipschitz and is SLOW(β)-convergent

The empirical operator Fn is UNS(γ)-unstable over the annulus A(θ?, ρ̃n, ρ)
for some γ < 0

Theorem 5

Under suitable initialization, the sequence θt+1
n = Fn(θtn) satisfies

min
k∈{0,1,...,t}

‖θkn − θ?‖ - max
{

[ε(n, δ)]
β

1+β−γβ , ρ̃n

}
when t % ε(n, δ)−

1
1+β .

Furthermore, this bound is tight.

Nhat Ho (Univ of Texas, Austin) September, 2021 31 / 37



Outline of proof

ν? = β
1+β−γβ

Assume that ‖θtn − θ?‖ > max {[ε(n, δ)]ν? , ρ̃n} for all t - ε(n, δ)−
1

1+β

As F is SLOW(β)-convergent and Fn is UNS(γ)-unstable,

‖θt+1
n − θ?‖ ≤ 1

tβ
+ t · ε(n, δ)

[ε(n, δ)]ν?|γ|

- [ε(n, δ)]ν? ,

when t % ε(n, δ)−
1

1+β
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Example of unstable and slow operators

{(Xi, Yi)}ni=1 are generated from a noisy non-linear regression model of the
form

Yi = (Xiθ
?)2 + ξi, for i = 1, . . . , n

where θ? = 0

ξi ∼ N (0, 1) and Xi ∼ N (0, 1)

We apply cubic-regularized Newton’s method (CNM) to the least-squares
loss
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Example of unstable and slow operators

L̃ and L̃n are population and sample least-square losses

Population CNM operator:

FCNM(θ) = arg min
y∈R

{
L̃′(θ)(y − θ) +

1

2
L̃′′(θ)(y − θ)2 + L |y − θ|3

}

= θ −
2
3θ

3

θ2 +
√
θ4 + 2

3θ
3

=⇒ FCNM is SLOW(2)-convergent

Sample CNM operator:

FCNM
n (θ) = arg min

y∈R

{
L̃′n(θ)(y − θ) +

1

2
L̃′′n(θ)(y − θ)2 + L |y − θ|3

}

=⇒ FCNM
n is UNS(− 1

2 )-unstable over the annulus A(θ?, ρ̃n, 1) with

ρ̃n � log(n/δ)/n1/4
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Example of unstable and slow operators

FCNM is SLOW(2)-convergent

FCNM
n is UNS(− 1

2 )-unstable over the annulus A(θ?, ρ̃n, 1) with

ρ̃n � log(n/δ)/n1/4

Additional regularity condition:

∣∣FCNM
n (θ)

∣∣ ≥ |θ∗n|

for all |θ| ∈ [|θ∗n| , 1] where θ∗n is global solution of least-squares loss

Under suitable initialization, the sequence θt+1
n = FCNM

n (θtn) satisfies

|θtn − θ?| - n−1/4 when t % n1/6
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Summary of results
Operator Properties Optimization Rate Stability

Iterations for
convergence

Statistical error
on convergence

General expressions

Fast, stable FAST(κ) STA(γ) log(1/ε(n, δ)) ε(n, δ)

Slow, stable SLOW(β) STA(γ) ε(n, δ)−
1

1+β−γβ [ε(n, δ)]
β

1+β−γβ

Fast, unstable FAST(κ) UNS(γ) log(1/ε(n, δ)) [ε(n, δ)]
1

1+|γ|

Slow, unstable SLOW(β) UNS(γ) [ε(n, δ)]−
1

1+β [ε(n, δ)]
β

1+β+|γ|β

Examples

Fast, stable e−κt r√
n

log n n−1/2

Slow, stable 1√
t

r√
n

n1/2 n−1/4

Fast, unstable e−κt 1
r
√
n

log n n−1/4

Slow, unstable 1
t2

1√
r
√
n

n1/6 n−1/4
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