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Motivation: Represent  using a few high quality points ℙ⋆ (xi)n
i=1

• I.I.D. sampling, and MCMC sampling exhibit the slow root-n Monte 
Carlo rate , e.g., ~  points for 0.1% error 

• Computationally prohibitive for expensive  , and common fixes uniform 
thinning, or standard thinning—-choose every th point 

• Accuracy degrades with such thinning—  worst-case error—
same as the slow rate with  points, e.g.,  rate with  points
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Minimax rates:  for 
- any compression scheme returning  points 
- any approximation based on  i.i.d. points
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Goal: Better than iid distribution compression

Given  points  with empirical distribution  

 
Return a subset of size  with empirical distribution  such that 
 
                                    
 
for suitable function / function class

n (xi)n
i=1 ℙin ≜

1
n

n

∑
i=1

δxi

s ℙout

|ℙin f − ℙout f | = o(s−1/2)
Many names: 
- better than Monte Carlo points 
- high quality coresets 
- good prototypes



Prior strategies
• Quasi Monte Carlo:  Better than Monte-Carlo error  uniformly supported on  

• Other strategies:  

• Kernel herding, support points—-theory not well-understood for general kernels 

• Several schemes require  with compact support or other restrictive assumptions  

• Kernel thinning [KT]: Near-optimal error for 

• General target distributions on  

• Sufficiently smooth and decaying kernels on  

• This work: Generalize the KT results to arbitrary kernels on arbitrary domains! 
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reproducing kernel  
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Non-uniform sub-sample of size   
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• Stage 1:  recursive 

rounds of non-uniform splitting the 
parent coreset in two equal-sized 
children coresets 

• Stage 2: Point-by-point refinement 
of the best child coreset

m =
1
2

log2(n/s)

Kernel Thinning: A two-staged procedure
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Original KT: Better than Monte Carlo error for smooth k

• Define  where  denotes Fourier transform 

• Original KT:  to run the algorithm & provide better than Monte Carlo rate 
for the worst-case integration error in the reproducing kernel Hilbert space of  

• Allows only sufficiently smooth kernels like Gaussian, inverse multiquadrics, …

kα−rt = ̂( ̂k)α ̂

α = 1/2
k
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• Define  where  denotes Fourier transform 

• Allows  to run the algorithm 

• Any fractional power or even the kernel itself can be used! 

• Provides better than Monte Carlo guarantees for single function 
for arbitrary kernels on arbitrary domains!

kα−rt = ̂( ̂k)α ̂

α ∈ [1/2,1]

Generalized kernel thinning



Root KT 
[Original Algorithm]

Kernel used in 
algorithm

Single-function 
error

Same as worst-
case error

Worst-case 
integration error 
for      supported 
on   

 
for sufficiently 
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Generalized kernel thinning 
https://arxiv.org/pdf/2110.01593.pdf



Root KT 
[Original Algorithm]

Target KT

Kernel used in 
algorithm

Single-function 
error

Same as worst-
case error

Worst-case 
integration error 
for      supported 
on   

 
for sufficiently 

smooth 
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For arbitrary  
on arbitrary domain
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https://arxiv.org/pdf/2110.01593.pdf



Generalized kernel thinning 
https://arxiv.org/pdf/2110.01593.pdf  https://github.com/microsoft/goodpoints    

Root KT 
[Original Algorithm]

Target KT KT+ 
[Best of both worlds]

Kernel used in 
algorithm

Single-function 
error

Same as worst-
case error

Worst-case 
integration error 
for      supported 
on   

 
for sufficiently 

smooth 
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Error,    -Root KT)
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α ∈ (1/2,1)

https://arxiv.org/pdf/2110.01593.pdf
https://github.com/microsoft/goodpoints

