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Motivation: Represent P* using a few high quality points (x;)"_,

¢ |.I.D. sampling, and MCMC sampling exhibit the slow root-n Monte

Carlo rate
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fl = @(n_l/z), e.g., ~ 10° points for 0.1% error

® Computationally prohibitive for expensive f, and common fixes uniform

thinning, or standard thinning—-choose every r—th point

e Accuracy degrades with such thinning—®(1/#/n) worst-case error—

same as the slow rate with n/t points, e.g., n~ /" rate with \/E points

Minimax rates: Q(n~'"?) for

- any compression scheme returning \/Z points

- any approximation based on n i.i.d. points



Goal: Better than iid distribution compression

1 n
Given n points (x,)’_; with empirical distribution P, = — Z Oy
i=1

Return a subset of size s with empirical distribution P, . such that

Many names:
B (=12
Pt = Pouf 1 = 0(s™) - better than Monte Carlo points

- high quality coresets
for suitable function / function class - good prototypes




Prior strategies

¢ Quasi Monte Carlo: Better than Monte-Carlo error P* uniformly supported on [0,1]¢
® Other strategies:

® Kernel herding, support points—-theory not well-understood for general kernels

® Several schemes require P* with compact support or other restrictive assumptions
e Kernel thinning [KT]: Near-optimal error for

e General target distributions on R¢

e Sufficiently smooth and decaying kernels on R?

® This work: Generalize the KT results to arbitrary kernels on arbitrary domains!



Kernel Thinning: A two-staged procedure
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® Stage 2: Point-by-point refinement
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Original KT: Better than Monte Carlo error for smooth k
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e Definek, .= (K)* where ™ denotes Fourier transtform

® Original KT: a = 1/2 to run the algorithm & provide better than Monte Carlo rate

for the worst-case integration error in the reproducing kernel Hilbert space of k

® Allows only sufficiently smooth kernels like Gaussian, inverse multiquadrics, ...



Generalized kernel thinning

A
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e Definek, . = (K)* where "™ denotes Fourier transtform

® Allows a € [1/2,1] to run the algorithm

® Any fractional power or even the kernel itself can be used!

® Provides better than Monte Carlo guarantees for single tfunction
for arbitrary kernels on arbitrary domains!



Generalized kernel thinning
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Generalized kernel thinning
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Generalized kernel thinning

https://arxiv.org/pdt/2110.01593.pdt https://qgithub.com/microsott/goodpoints
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