Generalized Kernel Thinning

Raaz Dwivedi, Lester Mackey raaz@mit.edu

and Applied Sciences

Harvard John A. Paulson **School of Engineering**

ICLR 2022

Motivation: Represent \mathbb{P}^* using a <u>few</u> high quality points $(x_i)_{i=1}^n$

- I.I.D. sampling, and MCMC sampling exhibit the slow root-n Monte **Carlo rate** $|\mathbb{P}^* f - \mathbb{P}_n f| = \Theta(n^{-1/2})$, e.g., ~ 10⁶ points for 0.1% error
- Computationally prohibitive for expensive f_i and common fixes uniform thinning, or standard thinning—-choose every *t*—th point
- Accuracy degrades with such thinning $-\Theta(\sqrt{t/n})$ worst-case error same as the slow rate with n/t points, e.g., $n^{-1/4}$ rate with \sqrt{n} points

Minimax rates: $\Omega(n^{-1/2})$ for - any compression scheme returning \sqrt{n} points - any approximation based on *n* i.i.d. points

Goal: Better than iid distribution compression

Given *n* points $(x_i)_{i=1}^n$ with empirical

Return a subset of size s with empirical distribution \mathbb{P}_{out} such that $\left| \mathbb{P}_{in} f - \mathbb{P}_{out} f \right| = o(s^{-1/2})$

for suitable function / function class

distribution
$$\mathbb{P}_{in} \triangleq \frac{1}{n} \sum_{i=1}^{n} \delta_{x_i}$$

Many names:

- better than Monte Carlo points
- high quality coresets
- good prototypes

Prior strategies

- Other strategies:
- Kernel thinning [KT]: Near-optimal error for
 - General target distributions on \mathbb{R}^d
 - Sufficiently smooth and decaying kernels on \mathbb{R}^d

• Quasi Monte Carlo: Better than Monte-Carlo error \mathbb{P}^{\star} uniformly supported on $[0,1]^d$

• Kernel herding, support points--theory not well-understood for general kernels

• Several schemes require \mathbb{P}^{\star} with compact support or other restrictive assumptions

• This work: Generalize the KT results to arbitrary kernels on arbitrary domains!

Kernel Thinning: A two-staged procedure

$$x_{1}, x_{2}, \dots, x_{n}$$
reproducing kernel **k**

$$P_{in} \triangleq \frac{1}{n} \sum_{i=1}^{n} \delta_{x_{i}}$$
(KT)

- Stage 1: $m = \frac{1}{2} \log_2(n/s)$ recursive rounds of **non-uniform splitting** the parent coreset in two equal-sized children coresets
- Stage 2: Point-by-point refinement of the best child coreset

Original KT: Better than Monte Carlo error for smooth k

$$x_{1}, x_{2}, \dots, x_{n}$$
reproducing kernel **k**

$$P_{in} \triangleq \frac{1}{n} \sum_{i=1}^{n} \delta_{x_{i}}$$
(KT)

- Define $\mathbf{k}_{\alpha-rt} = \widehat{(\mathbf{k})^{\alpha}}$ where $\hat{}$ denotes Fourier transform

• Original KT: $\alpha = 1/2$ to run the algorithm & provide better than Monte Carlo rate for the worst-case integration error in the reproducing kernel Hilbert space of \mathbf{k}

• Allows only sufficiently smooth kernels like Gaussian, inverse multiquadrics, ...

- Define $\mathbf{k}_{\alpha-rt} = (\hat{\mathbf{k}})^{\alpha}$ where $\hat{}$ denotes Fourier transform
- Allows $\alpha \in [1/2,1]$ to run the algorithm
- Any fractional power or even the kernel itself can be used!
- Provides better than Monte Carlo guarantees for single function for arbitrary kernels on arbitrary domains!

	Root KT [Original Algorithm]
Kernel used in algorithm	k _{1/2-<i>rt</i>}
Single-function error	Same as worst- case error
Worst-case integration error for \mathbb{P}^* supported on \mathbb{R}^d	$\widetilde{O}(n^{-1/2})$ for sufficiently smooth k

	Root KT [Original Algorithm]	
Kernel used in algorithm	k _{1/2-<i>rt</i>}	
Single-function error	Same as worst- case error	
Worst-case integration error for \mathbb{P}^* supported on \mathbb{R}^d	$\widetilde{O}(n^{-1/2})$ for sufficiently smooth k	

https://arxiv.org/pdf/2110.01593.pdf https://github.com/microsoft/goodpoints

	Root KT [Original Algorithm]	
Kernel used in algorithm	k _{1/2-<i>rt</i>}	
Single-function error	Same as worst- case error	
Worst-case integration error for \mathbb{P}^* supported on \mathbb{R}^d	$\widetilde{O}(n^{-1/2})$ for sufficiently smooth k	

