Gaussian Approximations in High Dimensional Estimation

Neeraja Sahasrabudhe IITB
(joint work with Prof. V. S. Borkar and Raaz Dwivedi)

September 8, 2014

Curse of Dimensionality

- Advancement in data collection and storage have enabled collection of huge amounts of information.

Curse of Dimensionality

- Advancement in data collection and storage have enabled collection of huge amounts of information.
- However, huge data presents substantial challenges to existing data analysis tools.

Curse of Dimensionality

- Advancement in data collection and storage have enabled collection of huge amounts of information.
- However, huge data presents substantial challenges to existing data analysis tools.
- Existing algorithms scale poorly with increase in number of dimensions of the data.

Curse of Dimensionality

- Advancement in data collection and storage have enabled collection of huge amounts of information.
- However, huge data presents substantial challenges to existing data analysis tools.
- Existing algorithms scale poorly with increase in number of dimensions of the data.
- This motivates mapping of data from high dimensional space to a lower dimensional space in a manner that prevents certain features/structure of the data.

Several estimation techniques in current use assume validity of Gaussian approximations for estimation purposes. These ensemble methods have proven to work very well for high-dimensional data even when the distributions involved are not necessarily Gaussian.

- Marginals in higher dimension can be approximated by marginals in lower dimension.
- Marginals in higher dimension can be approximated by marginals in lower dimension.
- Marginals in the lower dimensional space are approximately Gaussian.

Notation

- (X, Y) - a random vector in $\mathbb{R}^{n_{1}} \times \mathbb{R}^{n_{2}}$ with isotropic log concave density.

Notation

- (X, Y) - a random vector in $\mathbb{R}^{n_{1}} \times \mathbb{R}^{n_{2}}$ with isotropic log concave density.
- $\left(\Gamma X,\lceil Y)\right.$ - orthogonal projection (on first k_{1} and first k_{2} coordinates respectively) of random vectors X and Y.

Isotropic log-concave density

Isotropic log-concave density

- Definition

A function $f: \mathbb{R}^{n} \longrightarrow[0, \infty)$ is log-concave if for all $x, y \in \mathbb{R}^{n}$ and $0<\lambda<1$,

$$
f(\lambda x+(1-\lambda) y) \geq f(x)^{\lambda} f(y)^{1-\lambda}
$$

Isotropic log-concave density

- Definition

A function $f: \mathbb{R}^{n} \longrightarrow[0, \infty)$ is log-concave if for all $x, y \in \mathbb{R}^{n}$ and $0<\lambda<1$,

$$
f(\lambda x+(1-\lambda) y) \geq f(x)^{\lambda} f(y)^{1-\lambda}
$$

Isotropic log-concave density

- Definition

A function $f: \mathbb{R}^{n} \longrightarrow[0, \infty)$ is log-concave if for all $x, y \in \mathbb{R}^{n}$ and $0<\lambda<1$,

$$
f(\lambda x+(1-\lambda) y) \geq f(x)^{\lambda} f(y)^{1-\lambda} .
$$

- Definition

We say that $f: \mathbb{R}^{n} \longrightarrow[0, \infty)$ is isotropic if it is the density function of some random variable with zero mean and identity covariance matrix. That is, f is isotropic when

$$
\begin{array}{r}
\int_{\mathbb{R}^{n}} f(x) d x=1, \int_{\mathbb{R}^{n}} x f(x) d x=0 \\
\text { and } \int_{\mathbb{R}^{n}}<x, \theta>^{2} f(x) d x=\|\theta\|^{2} ; \forall \theta \in \mathbb{R}^{n}
\end{array}
$$

Extend the random vectors ΓX and ΓY in $\mathbb{R}^{k_{1}}$ and $\mathbb{R}^{k_{2}}$ to random vectors in $\mathbb{R}^{n_{1}}$ and $\mathbb{R}^{n_{2}}$ by adding appropriate number of zeroes respectively. By abuse of notation, we denote these new vectors in $\mathbb{R}^{n_{1}}$ and $\mathbb{R}^{n_{2}}$ by ΓX and ΓY.

- $\mu \approx \mu_{e m p}$ and $R \approx R_{e m p}$
- $\mu \approx \mu_{\text {emp }}$ and $R \approx R_{\text {emp }}$
- $E[\Gamma Y \mid \Gamma X]$ is determined by a random vector having approximately $\mathcal{N}(\mu, R)$ distribution.
- $\mu \approx \mu_{\text {emp }}$ and $R \approx R_{\text {emp }}$
- $E[\Gamma Y \mid \Gamma X]$ is determined by a random vector having approximately $\mathcal{N}(\mu, R)$ distribution.
- $E[Y \mid X] \approx E[\Gamma Y \mid \Gamma X]$

Show that $(\Gamma X, \Gamma Y) \approx \mathcal{N}(\mu, R)$ with,

$$
\mu=\left(\mu_{1}, \mu_{2}\right)
$$

and

$$
R=\left(\begin{array}{l|l}
R_{11} & R_{12} \\
\hline R_{21} & R_{22}
\end{array}\right)
$$

a square matrix of size $n_{1}+n_{2}$. Then,

$$
E[\Gamma Y \mid \Gamma X] \approx-\mu_{2}+R_{21} R_{11}^{-1}\left(\Gamma X+\mu_{1}\right)
$$

where $R_{11} \in \mathbb{R}^{n_{1} \times n_{1}}$

Low Dimensional Projections with Gaussian Densities

Theorem (Eldan and Klartag(2007))

Let $1 \leq I \leq n$ be an integer and let $K \subset \mathbb{R}^{n}$ be a convex body (compact convex set with non-empty interior). Let X be a random vector that is distributed uniformly in K, and suppose that X has zero mean and identity covariance matrix. Assume that $I \leq c n^{k}$. Then there exists a subset $\mathcal{E} \subset G_{n, l}$ with $\sigma_{n}(\mathcal{E}) \geq 1-e^{-\overline{\bar{n}} 0.9}$ such that for any $E \in \mathcal{E}$,

$$
\sup _{A \subseteq E}\left|P\left\{\operatorname{Proj}_{E}(X) \in A\right\}-\int_{A} \phi_{E}^{\prime}(x) d x\right| \leq \frac{1}{n^{k}}
$$

where the supremum runs over all measurable sets $A \subset E$. Here $\phi_{E}^{\prime}(x)$ is the standard I-dimensional Gaussian density in E and $c, k>0$ are universal constants.

Low Dimensional Projections with Gaussian Densities

Theorem (Klartag(2008))

Let X be an isotropic random vector in \mathbb{R}^{n} with a log-concave density. Let $1 \leq I \leq n^{c_{1}}$ be an integer. Then there exists a subset $\mathcal{E} \subset G_{n, l}$ with $\sigma_{n, l}(\mathcal{E}) \geq 1-C e^{-n^{c_{2}}}$ such that for any $E \in \mathcal{E}$, the following holds. Denote by f_{E} the density of the random vector $\operatorname{Proj}_{E}(X)$, then for all $x \in E$ with $\|x\| \leq n^{c_{4}}$,

$$
\left|\frac{f_{E}(x)}{\phi_{E}^{\prime}(x)}-1\right| \leq \frac{C}{n^{c_{3}}},
$$

Here $C, c_{1}, c_{2}, c_{3}, c_{4}>0$ are universal constants.

Low Dimensional Projections with Gaussian Densities

- Let G denote the product Grassmanian of all subspaces $S_{1} \times S_{2}$ of $\mathbb{R}^{n_{1}} \times \mathbb{R}^{n_{2}}$ where for $i=1,2, S_{i} \subset \mathbb{R}^{n_{i}}$ and $\operatorname{dim}\left(S_{i}\right)=k_{i}$.

Low Dimensional Projections with Gaussian Densities

- Let G denote the product Grassmanian of all subspaces $S_{1} \times S_{2}$ of $\mathbb{R}^{n_{1}} \times \mathbb{R}^{n_{2}}$ where for $i=1,2, S_{i} \subset \mathbb{R}^{n_{i}}$ and $\operatorname{dim}\left(S_{i}\right)=k_{i}$.
- Let σ denote the unique rotationally invariant probability measure on G.

Low Dimensional Projections with Gaussian Densities

- Let G denote the product Grassmanian of all subspaces $S_{1} \times S_{2}$ of $\mathbb{R}^{n_{1}} \times \mathbb{R}^{n_{2}}$ where for $i=1,2, S_{i} \subset \mathbb{R}^{n_{i}}$ and $\operatorname{dim}\left(S_{i}\right)=k_{i}$.
- Let σ denote the unique rotationally invariant probability measure on G.
- Then there exists $\mathcal{E} \subset G$ with $\sigma(\mathcal{E}) \geq 1-e^{-\left(n_{1}+n_{2}\right)^{c_{2}}}$ such that for all $(x, y) \in E$ with $\|(x, y)\|_{2} \leqslant\left(n_{1}+n_{2}\right)^{c_{4}}$

$$
\left|\frac{f_{E}(x, y)}{\phi_{E}(x, y)}-1\right| \leq \frac{C}{\left(n_{1}+n_{2}\right)^{c_{3}}},
$$

Low Dimensional Projections with Gaussian Densities

- Let G denote the product Grassmanian of all subspaces $S_{1} \times S_{2}$ of $\mathbb{R}^{n_{1}} \times \mathbb{R}^{n_{2}}$ where for $i=1,2, S_{i} \subset \mathbb{R}^{n_{i}}$ and $\operatorname{dim}\left(S_{i}\right)=k_{i}$.
- Let σ denote the unique rotationally invariant probability measure on G.
- Then there exists $\mathcal{E} \subset G$ with $\sigma(\mathcal{E}) \geq 1-e^{-\left(n_{1}+n_{2}\right)^{c_{2}}}$ such that for all $(x, y) \in E$ with $\|(x, y)\|_{2} \leqslant\left(n_{1}+n_{2}\right)^{c_{4}}$

$$
\left|\frac{f_{E}(x, y)}{\phi_{E}(x, y)}-1\right| \leq \frac{C}{\left(n_{1}+n_{2}\right)^{c_{3}}},
$$

- So, $\operatorname{Proj}_{E}(X, Y)$ is approximately Gaussian with high probability (i.e., $\geq 1-e^{-\left(n_{1}+n_{2}\right)^{c_{2}}}$).

Remains to show: $E[Y \mid X] \approx E[\Gamma Y \mid \Gamma X]$

- Step 1: $E[\Gamma Y \mid \Gamma X] \approx E[Y \mid \Gamma X]$

Remains to show: $E[Y \mid X] \approx E[\Gamma Y \mid \Gamma X]$

- Step 1: $E[\Gamma Y \mid \Gamma X] \approx E[Y \mid \Gamma X]$
- Step 2: $E[Y \mid \Gamma X] \approx E[Y \mid X]$

Johnson-Lindenstrauss Lemma

Theorem (JL-lemma (1984))
For any $0<\epsilon<1$ and any integer n, let k be a positive integer such that

$$
k \geq 8 \frac{\ln n}{\epsilon^{2}}
$$

Then for any set V of n points in \mathbb{R}^{d}, there is a map $f: \mathbb{R}^{d} \longrightarrow \mathbb{R}^{k}$ such that for all $u, v \in V$

$$
(1-\epsilon)\|u-v\|^{2} \leq\|f(u)-f(v)\|^{2} \leq(1+\epsilon)\|u+v\|^{2}
$$

Key idea

Define a suitable probability distribution \mathcal{F} on the set of all linear maps $\mathbb{R}^{n} \longrightarrow \mathbb{R}^{k}$. Then,

Lemma
Given $\epsilon>0$, if $T: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{k}$ is a random linear mapping drawn from the distribution \mathcal{F}, then for every vector $x \in \mathbb{R}^{d}$ we have

$$
P\{(1-\epsilon)\|x\| \leq\|T(x)\| \leq(1+\epsilon)\|x\|\} \geq 1-\frac{1}{n^{2}}
$$

Klartag and Mendelson generalized the notion of Johnson-Lindenstrauss Lemma to a general set and tried to reduce the dependence of k on n, where n is the dimension of the original space and k is the dimension of the subspace for projection.

Definition

For a metric space (T, d) define

$$
\gamma_{\alpha}(T, d)=\inf \sup _{t \in T} \sum_{s=0}^{\infty} 2^{s / \alpha} d\left(t, T_{s}\right)
$$

where the infimum is taken with respect to all subsets $T_{s} \subset T$ with cardinality $\left|T_{s}\right| \geq 2^{2^{s}}$ and $\left|T_{0}\right|=1$.

Theorem (Klartag and Mendelson(2005))

Let $G_{n, k}$ be the Grassmanian of k-dimesional subspaces of \mathbb{R}^{n} with the unique rotation invariant probability measure on $G_{n, k}$ denoted by $\sigma_{n, k}$. Then given $\epsilon>0$, for $k \geq C \gamma_{2}^{2}\left(\mathbb{R}^{n},\|\cdot\|_{2}\right) / \epsilon^{2}$, the following holds with probability larger than $1 / 2$, for $\Gamma=\sqrt{n} P$ where P is an orthogonal projection on a random k-dimensional subspace of \mathbb{R}^{n} drawn from $G_{n, k}$ as per $\sigma_{n, k}$:

$$
1-\epsilon \leq\|\Gamma x\| \leq 1+\epsilon
$$

Repeating this projection $O(n)$ times can boost the success probability to a desired constant, giving us the claimed randomized polynomial time algorithm. Specifically, after repeated independent projections, say $a \geq 1$ times, we can choose the best (i.e., one with the maximum norm) projection to get

$$
P(1-\epsilon \leq\|\Gamma x\| \leq 1+\epsilon)>1-1 / 2^{a}
$$

Martingale Difference Sequence

$\mathcal{F}_{0} \subset \mathcal{F}_{1} \subset \ldots$ be a a filtration of σ-field \mathcal{F} of a measure space $(\Omega, \mathcal{F}, \mathcal{P})$. A sequence Y_{1}, Y_{2}, \ldots of random variables form a martingale difference sequence if Y_{k} is \mathcal{F}_{k}-measurable and $E\left(Y_{k} \mid \mathcal{F}_{k-1}\right)=0$ for each positive integer k.

- Given the random vector (X, Y), let $X=\left(X_{1}, \ldots, X_{n_{1}}\right)$. For $1 \leq s \leq n_{1}$, let us denote by $\Gamma_{s} X$ the projection on first s coordinates.
- Given the random vector (X, Y), let $X=\left(X_{1}, \ldots, X_{n_{1}}\right)$. For $1 \leq s \leq n_{1}$, let us denote by $\Gamma_{s} X$ the projection on first s coordinates.
- Again, by abuse of notation we denote the vector in $\mathbb{R}^{n_{1}}$ obtained by adding $n_{1}-s$ zeroes at the end as $\Gamma_{s} X$.
- Given the random vector (X, Y), let $X=\left(X_{1}, \ldots, X_{n_{1}}\right)$. For $1 \leq s \leq n_{1}$, let us denote by $\Gamma_{s} X$ the projection on first s coordinates.
- Again, by abuse of notation we denote the vector in $\mathbb{R}^{n_{1}}$ obtained by adding $n_{1}-s$ zeroes at the end as $\Gamma_{s} X$.
- So, $E\left[Y \mid \Gamma_{n_{1}} X\right]=E[Y \mid X]$ and $E\left[Y \mid \Gamma_{k_{1}} X\right]=E[Y \mid \Gamma X]$.
- Given the random vector (X, Y), let $X=\left(X_{1}, \ldots, X_{n_{1}}\right)$. For $1 \leq s \leq n_{1}$, let us denote by $\Gamma_{s} X$ the projection on first s coordinates.
- Again, by abuse of notation we denote the vector in $\mathbb{R}^{n_{1}}$ obtained by adding $n_{1}-s$ zeroes at the end as $\Gamma_{s} X$.
- So, $E\left[Y \mid \Gamma_{n_{1}} X\right]=E[Y \mid X]$ and $E\left[Y \mid \Gamma_{k_{1}} X\right]=E[Y \mid \Gamma X]$.
- $E\left[Y \mid \Gamma_{s+1} X\right]-E\left[Y \mid \Gamma_{s} X\right]$ form a martingale difference family for $1 \leq s \leq n_{1}-1$.

Theorem (Hoeffding-Azuma inequality)
Let $\alpha_{1}, \alpha_{2}, \ldots$ be constants, and let $Y_{1}, Y_{2} \ldots$ be a martingale difference sequence with $\left|Y_{k}\right| \leq \alpha_{k}$ for each k. Then for any $t \geq 0$,

$$
\mathcal{P}\left(\sum Y_{k} \geq t\right) \leq 2 e^{-t^{2} / 2 \sum \alpha_{k}^{2}} .
$$

Let $\left\{Z_{i}\right\}$ be a martingale difference sequence. Define $S_{n}=\sum_{i=1}^{n} Z_{i}$.

- Lesigne and $\operatorname{Volny}(2001)$. If $\sup E\left[e^{\left|Z_{i}\right|}\right]<\infty$, then $\exists c>0$ such that $P\left(S_{n}>n\right) \leq e^{-c n^{1 / 3}}$

Let $\left\{Z_{i}\right\}$ be a martingale difference sequence. Define $S_{n}=\sum_{i=1}^{n} Z_{i}$.

- Lesigne and $\operatorname{Volny}(2001)$. If $\sup E\left[e^{\left|Z_{i}\right|}\right]<\infty$, then $\exists c>0$ such that $P\left(S_{n}>n\right) \leq e^{-c n^{1 / 3}}$
- Finite p th moments $(p \geq 2): P\left(S_{n}>n\right) \leq c n^{-p / 2}$

Let $\left\{Z_{i}\right\}$ be a martingale difference sequence. Define $S_{n}=\sum_{i=1}^{n} Z_{i}$.

- Lesigne and $\operatorname{Volny}(2001)$. If $\sup E\left[e^{\left|Z_{i}\right|}\right]<\infty$, then $\exists c>0$ such that $P\left(S_{n}>n\right) \leq e^{-c n^{1 / 3}}$
- Finite p th moments $(p \geq 2): P\left(S_{n}>n\right) \leq c n^{-p / 2}$
- Y. Li (2003). If $Z_{i} \in \mathcal{L}^{p}, 1<p \leq 2,\left\|Z_{i}\right\| \leq M$ for all i, and let $x>0$. Then

$$
P\left(\left|S_{n}\right|>n x\right) \leq \frac{M^{p}}{x^{p}} b_{p}^{p} n^{1-p},
$$

where $b_{p}=18 p q^{1 / 2}$ and q is such that $1 / p+1 / q=1$.

So we have,

- $P(\|E[Y \mid \Gamma X]-E[Y \mid X]\|>\epsilon) \leq e^{-c\left(n_{1}-k_{1}-1\right)^{1 / 3}}$ provided $\sup E\left[e^{\left\|E\left[Y \mid \Gamma_{i} X\right]\right\|}\right]<\infty$

So we have,

- $P(\|E[Y \mid \Gamma X]-E[Y \mid X]\|>\epsilon) \leq e^{-c\left(n_{1}-k_{1}-1\right)^{1 / 3}}$ provided $\sup E\left[e^{\left\|E\left[Y \mid \Gamma_{i} X\right]\right\|}\right]<\infty$
- For $E\left[Y \mid \Gamma_{s+1} X\right]-E\left[Y \mid \Gamma_{s} X\right] \in \mathcal{L}^{2}$ and $\left\|E\left[Y \mid \Gamma_{s+1} X\right]-E\left[Y \mid \Gamma_{s} X\right]\right\| \leq M$

$$
P\left(S_{n}>n\right) \leq o\left(n^{-1}\right) .
$$

- Exponential finite moments:

$$
P(\|E[\Gamma Y \mid \Gamma X]-E[Y \mid X]\|>\epsilon) \leq \frac{1}{2^{a}}+e^{-c\left(n_{1}-k_{1}-1\right)^{1 / 3}}
$$

- Exponential finite moments:

$$
P(\|E[\Gamma Y \mid \Gamma X]-E[Y \mid X]\|>\epsilon) \leq \frac{1}{2^{a}}+e^{-c\left(n_{1}-k_{1}-1\right)^{1 / 3}}
$$

- Bounded in \mathcal{L}^{p} :

$$
P(\|E[\Gamma Y \mid \Gamma X]-E[Y \mid X]\|>\epsilon) \leq \frac{1}{2^{a}}+o\left(n^{-1 / 3}\right)
$$

- Exponential finite moments:

$$
P(\|E[\Gamma Y \mid \Gamma X]-E[Y \mid X]\|>\epsilon) \leq \frac{1}{2^{a}}+e^{-c\left(n_{1}-k_{1}-1\right)^{1 / 3}}
$$

- Bounded in \mathcal{L}^{p} :

$$
P(\|E[\Gamma Y \mid \Gamma X]-E[Y \mid X]\|>\epsilon) \leq \frac{1}{2^{a}}+o\left(n^{-1 / 3}\right)
$$

- Combine this with the fact that $E[\Gamma Y \mid \Gamma X]$ is Gaussian with probability larger than $1-e^{-\left(n_{1}+n_{2}\right)^{c_{2}}}$.

Thank you!

