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Introduction
Random Low Dimensional Projections

Approximating higher dimensional marginals

Curse of Dimensionality

I Advancement in data collection and storage have enabled
collection of huge amounts of information.

I However, huge data presents substantial challenges to existing
data analysis tools.

I Existing algorithms scale poorly with increase in number of
dimensions of the data.

I This motivates mapping of data from high dimensional space
to a lower dimensional space in a manner that prevents
certain features/structure of the data.
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Random Low Dimensional Projections

Approximating higher dimensional marginals

Several estimation techniques in current use assume validity of
Gaussian approximations for estimation purposes.
These ensemble methods have proven to work very well for
high-dimensional data even when the distributions involved are not
necessarily Gaussian.
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Approximating higher dimensional marginals

I Marginals in higher dimension can be approximated by
marginals in lower dimension.

I Marginals in the lower dimensional space are approximately
Gaussian.
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Random Low Dimensional Projections

Approximating higher dimensional marginals

Notation

I (X ,Y ) - a random vector in Rn1 × Rn2 with isotropic log
concave density.

I (ΓX , ΓY ) - orthogonal projection (on first k1 and first k2

coordinates respectively) of random vectors X and Y .
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Approximating higher dimensional marginals

Isotropic log-concave density

I Definition
A function f : Rn −→ [0,∞) is log-concave if for all x , y ∈ Rn and
0 < λ < 1,

f (λx + (1− λ)y) ≥ f (x)λf (y)1−λ.

I Definition
We say that f : Rn −→ [0,∞) is isotropic if it is the density
function of some random variable with zero mean and identity
covariance matrix. That is, f is isotropic when∫

Rn

f (x)dx = 1,

∫
Rn

xf (x)dx = 0

and

∫
Rn

< x , θ >2 f (x)dx = ‖θ‖2; ∀ θ ∈ Rn
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Random Low Dimensional Projections

Approximating higher dimensional marginals

Extend the random vectors ΓX and ΓY in Rk1 and Rk2 to random
vectors in Rn1 and Rn2 by adding appropriate number of zeroes
respectively. By abuse of notation, we denote these new vectors in
Rn1 and Rn2 by ΓX and ΓY .

Neeraja Sahasrabudhe IITB (joint work with Prof. V. S. Borkar and Raaz Dwivedi)Gaussian Approximations in High Dimensional Estimation



Introduction
Random Low Dimensional Projections

Approximating higher dimensional marginals

I µ ≈ µemp and R ≈ Remp

I E [ΓY |ΓX ] is determined by a random vector having
approximately N (µ,R) distribution.

I E [Y |X ] ≈ E [ΓY |ΓX ]
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Random Low Dimensional Projections

Approximating higher dimensional marginals

Show that (ΓX , ΓY ) ≈ N (µ,R) with,

µ = (µ1, µ2)

and

R =

(
R11 R12

R21 R22

)
a square matrix of size n1 + n2. Then,

E [ΓY |ΓX ] ≈ −µ2 + R21R−1
11 (ΓX + µ1)

where R11 ∈ Rn1×n1
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Approximating higher dimensional marginals

Low Dimensional Projections with Gaussian Densities

Theorem (Eldan and Klartag(2007))

Let 1 ≤ l ≤ n be an integer and let K ⊂ Rn be a convex body
(compact convex set with non-empty interior). Let X be a random
vector that is distributed uniformly in K , and suppose that X has
zero mean and identity covariance matrix. Assume that l ≤ cnk .
Then there exists a subset E ⊂ Gn,l with σn(E) ≥ 1− e−cn

0.9
such

that for any E ∈ E ,

sup
A⊆E
|P{ProjE (X ) ∈ A} −

∫
A
φlE (x)dx | ≤ 1

nk
,

where the supremum runs over all measurable sets A ⊂ E . Here
φlE (x) is the standard l-dimensional Gaussian density in E and
c , k > 0 are universal constants.
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Approximating higher dimensional marginals

Low Dimensional Projections with Gaussian Densities

Theorem (Klartag(2008))

Let X be an isotropic random vector in Rn with a log-concave
density. Let 1 ≤ l ≤ nc1 be an integer. Then there exists a subset
E ⊂ Gn,l with σn,l(E) ≥ 1− Ce−n

c2 such that for any E ∈ E , the
following holds. Denote by fE the density of the random vector
ProjE (X ), then for all x ∈ E with ‖x‖ ≤ nc4 ,∣∣∣∣ fE (x)

φlE (x)
− 1

∣∣∣∣ ≤ C

nc3
,

Here C , c1, c2, c3, c4 > 0 are universal constants.
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Approximating higher dimensional marginals

Low Dimensional Projections with Gaussian Densities

I Let G denote the product Grassmanian of all subspaces
S1 × S2 of Rn1 × Rn2 where for i = 1, 2, Si ⊂ Rni and
dim(Si ) = ki .

I Let σ denote the unique rotationally invariant probability
measure on G .

I Then there exists E ⊂ G with σ(E) ≥ 1− e−(n1+n2)c2 such
that for all (x , y) ∈ E with ‖(x , y)‖2 6 (n1 + n2)c4∣∣∣∣ fE (x , y)

φE (x , y)
− 1

∣∣∣∣ ≤ C

(n1 + n2)c3
,

I So, ProjE (X ,Y ) is approximately Gaussian with high
probability (i.e., ≥ 1− e−(n1+n2)c2 ).
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Introduction
Random Low Dimensional Projections

Approximating higher dimensional marginals

Remains to show: E [Y |X ] ≈ E [ΓY |ΓX ]

I Step 1: E [ΓY |ΓX ] ≈ E [Y |ΓX ]

I Step 2: E [Y |ΓX ] ≈ E [Y |X ]
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Approximating higher dimensional marginals

Johnson-Lindenstrauss Lemma

Theorem (JL-lemma (1984))

For any 0 < ε < 1 and any integer n, let k be a positive integer
such that

k ≥ 8
ln n

ε2

Then for any set V of n points in Rd , there is a map
f : Rd −→ Rk such that for all u, v ∈ V

(1− ε)‖u − v‖2 ≤ ‖f (u)− f (v)‖2 ≤ (1 + ε)‖u + v‖2
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Approximating higher dimensional marginals

Key idea

Define a suitable probability distribution F on the set of all linear
maps Rn −→ Rk . Then,

Lemma
Given ε > 0, if T : Rn −→ Rk is a random linear mapping drawn
from the distribution F , then for every vector x ∈ Rd we have

P{(1− ε)‖x‖ ≤ ‖T (x)‖ ≤ (1 + ε)‖x‖} ≥ 1− 1

n2
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Approximating higher dimensional marginals

Klartag and Mendelson generalized the notion of
Johnson-Lindenstrauss Lemma to a general set and tried to reduce
the dependence of k on n, where n is the dimension of the original
space and k is the dimension of the subspace for projection.

Definition
For a metric space (T , d) define

γα(T , d) = inf sup
t∈T

∞∑
s=0

2s/αd(t,Ts),

where the infimum is taken with respect to all subsets Ts ⊂ T
with cardinality |Ts | ≥ 22s and |T0| = 1.
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Approximating higher dimensional marginals

Theorem (Klartag and Mendelson(2005))

Let Gn,k be the Grassmanian of k-dimesional subspaces of Rn with
the unique rotation invariant probability measure on Gn,k denoted
by σn,k . Then given ε > 0, for k ≥ Cγ2

2(Rn, ‖.‖2)/ε2, the following
holds with probability larger than 1/2, for Γ =

√
nP where P is an

orthogonal projection on a random k-dimensional subspace of Rn

drawn from Gn,k as per σn,k :

1− ε ≤ ‖Γx‖ ≤ 1 + ε.
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Approximating higher dimensional marginals

Repeating this projection O(n) times can boost the success
probability to a desired constant, giving us the claimed randomized
polynomial time algorithm. Specifically, after repeated independent
projections, say a ≥ 1 times, we can choose the best (i.e., one with
the maximum norm) projection to get

P(1− ε ≤ ‖Γx‖ ≤ 1 + ε) > 1− 1/2a

.
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Approximating higher dimensional marginals

Martingale Difference Sequence

F0 ⊂ F1 ⊂ . . . be a a filtration of σ−field F of a measure space
(Ω,F ,P). A sequence Y1,Y2, . . . of random variables form a
martingale difference sequence if Yk is Fk -measurable and
E (Yk |Fk−1) = 0 for each positive integer k .
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Random Low Dimensional Projections

Approximating higher dimensional marginals

I Given the random vector (X ,Y ), let X = (X1, . . . ,Xn1). For
1 ≤ s ≤ n1, let us denote by ΓsX the projection on first s
coordinates.

I Again, by abuse of notation we denote the vector in Rn1

obtained by adding n1 − s zeroes at the end as ΓsX .

I So, E [Y |Γn1X ] = E [Y |X ] and E [Y |Γk1X ] = E [Y |ΓX ].

I E [Y |Γs+1X ]− E [Y |ΓsX ] form a martingale difference family
for 1 ≤ s ≤ n1 − 1.
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Approximating higher dimensional marginals

Theorem (Hoeffding-Azuma inequality)

Let α1, α2, . . . be constants, and let Y1,Y2 . . . be a martingale
difference sequence with |Yk | ≤ αk for each k. Then for any t ≥ 0,

P
(∑

Yk ≥ t
)
≤ 2e−t

2/2
∑
α2
k .
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Approximating higher dimensional marginals

Let {Zi} be a martingale difference sequence. Define Sn =
n∑

i=1
Zi .

I Lesigne and Volny(2001). If sup
i

E [e |Zi |] <∞, then ∃ c > 0

such that P(Sn > n) ≤ e−cn
1/3

I Finite pth moments (p ≥ 2): P(Sn > n) ≤ cn−p/2

I Y. Li (2003). If Zi ∈ Lp, 1 < p ≤ 2, ‖Zi‖ ≤ M for all i , and
let x > 0. Then

P(|Sn| > nx) ≤ Mp

xp
bp
pn1−p,

where bp = 18pq1/2 and q is such that 1/p + 1/q = 1.
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So we have,

I P(‖E [Y |ΓX ]− E [Y |X ]‖ > ε) ≤ e−c(n1−k1−1)1/3

provided sup
i

E [e‖E [Y |ΓiX ]‖] <∞

I For E [Y |Γs+1X ]− E [Y |ΓsX ] ∈ L2

and ‖E [Y |Γs+1X ]− E [Y |ΓsX ]‖ ≤ M

P(Sn > n) ≤ o(n−1).
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I Exponential finite moments:

P(‖E [ΓY |ΓX ]− E [Y |X ]‖ > ε) ≤ 1

2a
+ e−c(n1−k1−1)1/3

.

I Bounded in Lp:

P(‖E [ΓY |ΓX ]− E [Y |X ]‖ > ε) ≤ 1

2a
+ o(n−1/3).

I Combine this with the fact that E [ΓY |ΓX ] is Gaussian with
probability larger than 1− e−(n1+n2)c2 .
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Thank you!
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