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Talk outline

1. Causal Latent Factor Models: Data-rich enviroments
2. Double Robustness: A Layman's Perspective

3. Integrating: Two Vignettes



1. Causal Latent Factor Models:
Inference for modern data-rich settings
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Decision-making in data-rich environments

Data: N units with T'measurements under (finitely) many interventions

Goal: Determine counterfactuals—units’ outcomes under alternate interventions
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Causal panel data: Basic set-up

e Individual treatment eftect (ITE): ITEZ-J = 6’1.(;) — Hl.(?)
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Causal latent factor model: Common assumptions

1. Sufficient unmeasured confounders: (Yl.(;), Yl.(,?)) 1A, |F Estimands

2. Factor model for outcomes: Hi(?) = (ul.(“), v (@) ATE, = Z (6’(1) 0°))

0(0)
1,1

3. Positivity/overlap:p <p;,, <1 -—p ITE;, = gi(j) _

4. Random variables drawn independently across (i, 1) after
conditioning on latent factors &
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Black-box Matrix
{Yit ) Ait — 1 } —> Completion

Black-box Matrix v’ Works well if O and
{Yi,t . Ai,t — O} EE— Completion O have low-rank
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adjustment with unobserved confounding?



2. Double Robustness:
A Layman's Perspective
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When the estimand is a product
0™ = (u,v)

Similar structure across problems:

. For ATE with observed confounding: E[Y(1)] = E|E[Y(1)|X] - é()]
P

= |E[Y]X] -@]

p(X)

o Importance sampling: £y o[Y] =
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Given estimates ii and 7, what is a good estimator for * = yv?

Double robustness, debiased/double

machine learning...

[... Cassel+ '77, Robinson ‘88, Sarndal+ ‘89, Robins+ ‘94, ‘95,
‘08, '09, Newey+ ‘94, '18, Bickel+ '98, van der Laan+ 03,
Lunceford+ ‘04, Davidian+ ‘05, Li+ "11, Jiang+ "15,
Chernozhukov+ ‘18, Hirshberg+ 18, Diaz '19, Arkhangelsky+
21, Dorn+ ‘21 ...]
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Simplified view of doubly robust estimator for uv

Ay O(lu—ul| +|v—v]|)
uv + uv — iy O(lit —u| X|v—=—v])
Problem setting U v
ATE with observed confounding conditional outcome mean propensity function
Oft policy evaluation mean reward importance ratio
[This talk] ATE with unobserved confounding outcome matrix propensity matrix
[This talk] ITE with unobserved confounding user factor time factor




uv + uyv — uy



3. Integrating double robustness with
causal latent factor model

> v+ oub - ab

Part 1: Doubly robust estimation ot ATE, = — Z (6’(1) Qi((t)))
=1

Part 2: Doubly robust estimation of ITE; , = 91.(? - ‘91-(?)



Doubly robust estimation of ATE, = Z 6, =0

(CATE for unobserved contounding)

Alberto Abadie Anish Agarwal Abhin Shah

https://arxiv.org/abs/2402.11652
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_ A (A; ) A
Yiaf i Hi,t T gi,t ®(a) [H(Q)]ze[N],te[T]
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How do we do augmented IPW / doubly robust
adjustment with unobserved confounding?

_ nl4;) (A;) A
Yi,t — Hi,t + 8i,t @(a) — [Hi(’?)]ie[N],te[T]

Matrix

{Yi,t : Ai,t — 1} — > Completion — (:)(1)

_—— o 1 & 0 AG
AlE, = N Z (6,1(‘,2 N Hg,t))
i=1

Matrix

Y. :A =0} — Completi — 00
{ Lt L0 j ompietion v’ Works well if ' and

®"Y) have low-ranks 1
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There is one other matrix that we can
leverage!

The Intervention Matrix Al But its fully observed?

What about P =E[A | F] ?

Estimation

PV ] @ — A
ATE, ZNZ th t

pzt pi,t

v’ Works well if P is low-rank

A Matrix P

-)
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But when is P low-rank?

smooth f

Pi: = P; Or Py




But when is P low-rank?




So..can we design estimators that are robust to either
outcome matrix or propensity matrix being low rank?




So..can we design estimators that are robust to either
outcome matrix or propensity matrix being low rank?

Black-box Matrix

Completion

Black-box Matrix
Y o (1 — A) E— Completion

A Black-box Matrix
Estimation
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Formula
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Yes...let's make an attempt
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Need to identify the terms from the observed data...

A i A,
Assuming 8V 1L A, [«9(1)—t] = 6’(1) - ] 9(1)
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And thus arrives the doubly robust estimate
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And subsequently the doubly robust estimate for ATE
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And subsequently the doubly robust estimate for ATE

—_— DR 1 N A ~ A
(1) 1,1 (1) L1
ATE — — ' + Y — 0= :)
! ‘Afgg; (:IJ ZII%J " Dis
1,1 1,1 A .1 A
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Baselines
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Block independence for nuisance estimates

5 (1) y(0)
ps AL Y 'Y
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Block independence for nuisance estimates

Via Cross-Fitted Matrix Completion

5 (1) y(0)
ps AL Y 'Y

(:)(;), (:)gs())),ﬁé) 1A Use only thgse three matrix
blocks to estimate/complete

block &
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e unobserved confounding
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Error guarantees for DR estimate for ATE,

Informal theorem [Abadie-Agarwal-Dwivedi-Shah, '24]
Fix t. If for all i, we have

e unobserved confounding

® positivity

Typical matrix-completion rates:

® independent noise, and poly(rank)

® block independent matrix estimates, \/N/\ T

then with high probability,

__—— DR 1 T1OW — (:)(a) P _ }’5 )
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f bias = 0,(N~"%)
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Error guarantees for DR estimate for ATE,

- _ —1/2
Generic matrix completion It bias = 0,(N~"7)
- No asymptotic normality .
- Slow error rates with large ranks \ﬁV(ATEt —ATE, ) 5 /V(O,az)
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Error guarantees for DR estimate for ATE,

Doubly robust to the rank of outcome
& propensity matrices

- —1/2
Generic matrix completion It bias = 0,(N~"7)
- No asymptotic normality
- Slow error rates with large ranks \ﬁV(ATEt —X’IE DR) . /(0 02)
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Simulation results with growing ranks

max | ATE, — ﬁt\ (averaged across 1000 runs)
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Simulation results with growing ranks
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Simulation results with growing ranks

Normality of DR estimates for a fixed ¢
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Simulation results with growing ranks

Normality of DR estimates for a fixed ¢
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But, what if the outcomes do
have a low-rank structure?

Can we hope to estimate I'TE,; , = Hi(;) — Hi(?)?

In this talk, hencetorth assume Pi: =D



Part 2:
Doubly robust nearest neighbors for
estimating ITE

Katherine Tian Sabina Tomkins  Predrag Klasnja Susan Murphy Devavrat Shah
https://arxiv.org/abs/2202.06891

https://arxiv.org/abs/2211.14297
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A common approach for ITE: Nearest neighbors

1. Compute distance b/w usersiandj Treatment] Treatment
, B B = a * a
p(a) B zt/;él‘ (Yi,f,_ Yj,t/) * I(Ai,t/—Aj,t/—Cl)
H Zl"#l‘ I(Ai,l/:Aj,I/: Cl)

Estimate
(g(a)
it




A common approach for ITE: Nearest neighbors

A. .
Y, = (9.( 2N noise;,
: il : T measurements

Treatment Treatment

= a * a

Estimate
2. Average neighbor outcomes at time ¢ ‘9,-(,?)

N a
9 (@) _ ijl Y 1(Pi(,j) =1, 4,=a)

i,ruse=NN N
Zj=1 l(pl(j) S s Aj,t: a)

N users
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A common approach for ITE: Nearest neighbors

A. .
Y, = (9.( 2N noise;,
: il : T measurements

Treatment Treatment

= a ;éa

Estimate
2. Average neighbor outcomes at time ¢ ‘9,-(,?)

N .
> Y1) <n, A =a)

9 (a) —

i,ruse=NN N
> 10 <nAj=a)

3. Do this procedure fora = 0 and 1. N users
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Entry-wise guarantees for User-NN

1

|
N (a) _ pla)
‘H” user-N H’ 3 \/_ N (#overlap)l/ ’ \/P

- #Row Neighbors within n

1 1
— +
M (p=)'" \/PNIM
1 1
[—1,1]¢ —>

_|_
(p2T)l/4 \/ pN2/(d+2)
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Two variants of nearest neighbors

User-NN Time-NN




N (a)
0 1,t,user—NN

10

1,t,time— NN
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How do we improve the slow error rates?

Simulation results with N=T

Uniform factors on [—0.5,0.5]* Gaussian noise,

pooled e-greedy policy (e = 0.5)

Decay of avg. error across users (N =T, 20 trials)
G N (a) 1) | = I 4 I >
ituseeNN it T1/4 \/N 2" “‘—--—1__

...
|
N

x,
I
I
I
I
I
b,
I

—p— USVT; T70-10 K J
2_4 ""USGF-NN T_028 ...'....
Time-NN: T-0-23 e
2" 2° 2° o'

USVT: A baseline algori:tlr-wm from [Chatterjee 2014]
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Integrating double robustness with nearest neighbors

Let j be such that pl.(;.l) <n & A,;=a

t' be such that & A, =a
7 (a) v .
ei,t,user—NN o Yj,t ™~ <uj’ Vt> o <ui9 Vt>
Estimate
— Y  ~ _ A Hi,t
— I; p = (U Vi) = (U, V)
A(a) — — : user-NN
Hi,t,DR—NN YJf + 1, YJJ’ Y., th,

(U Vi) + Uy V) — (U, V)




Integrating double robustness with nearest neighbors

1i,t,j,t’ — 1(,01-(3) < , ,Aj,tzAi,t,z Aj, t,:a)
0 (a) _
Hi,t,DR—NN o i
Y 1. . Z (Yt V=10 Ly Esz)mate
]#l,t’#t l,t,]’t,];él,t,?ét l,t




ample-split for doubly robust nearest neighbors

1zt]t — l(p(a) <7, ’Aj,tzAi,t’zAj,z’za)
0 (a) _
6)1 t, DR-INN i
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Sample-split for doubly robust nearest neighbors

li,t,j,t’ — 1(/01-(5) <1, Pt(jf) S, A=A y=A p=a)
n(a) —
Hi,t,DR—NN - |
Z (Yj,t+ Yy — Y]t) llt]t

*Nuisance estimates should be fitted
independently of terms used for debiasing

Estimate

Hi,t

time-NN
Y

user-NN

Y.,

I,
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Sample-split for doubly robust nearest neighbors

L jr = l(pi(,?) <1, /0;(,?) =, A=A =4 p=a) Use this data to
estimate time

H@ — neighbors of ¢
1,t, DR-NN
1
1 Z (Yj»f_l_ Yi,t' o Y},t’) °1i,t,j,t’ Estimate time-NN
z‘]#l,t/#t i’t,j’t,j?éi,t/#t Hi,t Y

*Nuisance estimates should be fitted

user-NN

1,
Y. t

independently of terms used for debiasing
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Doubly robust estimate fixes the slow error rates

1 1
9@ — 09| = +
‘ ,tr,user—\NN 1,1 ‘ (T1/4 \ﬁv)

l

|
N (a) __nla) S T
‘eztDRNN Hlt ‘_ ( T )

VT YN

[Dwivedi-Tian-Tomkins-Klasnja-Murphy-Shah ‘22b]



Doubly robust estimate fixes the slow error rates

1 1
g(a) —_ W] = n
‘ 1,t,user=NN 1, ‘ T1/4 \ﬁ\f

l

|
N (a) __nla) S T
‘eztDRNN sz ‘_ ( T )

VT YN

[Dwivedi-Tian-Tomkins-Klasnja-Murphy-Shah ‘22b]

Simulation results with N=T

Uniform factors on [—0.5,0.5]* Gaussian noise,

pooled e-greedy policy (e = 0.5)

Decay of avg. error across users (N =T, 20 trials)

2_3 L---—
T I
~~~~~ \. ~ "
..h*
\'{.4....
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2™ . .@-User-NN: T—0-28 S T
~ "o,
Time-NN: T~923 S o ®
—-DR-NN: T-046 & % \‘\
\l%fe \\*
4 5 6 7
2 2 T 2 2

USVT: A baseline algorithm from [Chatterjee 2014] 38



Simulation results

Decay of avg. error across users (N =T, 20 trials)

2—3 -—-——__1_-
T LS
", ~
bh...\.\ 1
..h
 ZHI8S
\..'..
—p— USVT: T~0:10 S e
-4 ~ ..'.
2 -4@-User-NN: 7798 S T
~ .'..
Time-NN: T70-23 So ®
~
——— DR-NN: T~0-46 So
~




Simulation results

Decay of avg. error across users (N =T, 20 trials)
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Simulation results

Variation of error across users
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HeartSteps study results &3« & _-.-

Treatments assigned with Thompson sampling independently for 91 users for 90 days, 5 times a day

4 Variation of error across 20 users at 50 times (test data)
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DR-NN error ~ min { user-NN error, time-NN error }
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HeartSteps study results &3« & _-.-

Treatments assigned with Thompson sampling independently for 91 users for 90 days, 5 times a day

Variation of error across 20 users at 50 times (test data) Histogram across 20 users at 50 times for a = O (test data)
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DR-NN: Robust to heterogeneity in user & time factors



DR-NN: Robust to heterogeneity in user & time factors

DR-NN error X user-NN error X
<

min{user-NN error, 1

As long as, either user factors or time factors
exhibit similarities, DR-NN has a good error



Summary: Integrating Double Robustness into Causal
Latent Factor Models




Summary: Integrating Double Robustness into Causal
Latent Factor Models

U O(lu—ul|l +|v—=v])
Uy + uv — uv O(lit —ul X|[v—=v|)
Problem setting u 1%
This ATE with Matrix Completion (Unobserved confounding) outcome matrix propensity matrix
talk ITE with Nearest Neighbors (Unobserved confounding) user factor time factor

Thank you!
raazdwivedi.github.io



http://raazdwivedi.github.io




A popular approach for ITE: Nearest neighbors

Easy to implement and interpretable for checking

Prior
+ Entry-wise guarantees work/other

methods

+ Robust to interventional patterns

* missing completely at random (MCAR) Rich literature
Li etal. 2019]

* sequential randomization (MAR)
[Dwivedi et al. 2022a]

Not so rich literature

| NN
entry-wise guarantees |
. _

e unmeasured confounding (MNAR) ot .
essentially assuming —

[ongoing work]

Intervention matrix
45




Simulation results with growing ranks
Uniform factors with rank(®@@) = N'* Rank(P) = N'”°
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Bias-variance tradeoff for the nearest neighbors with 7

0.018
0.017
0.016

MSE for estimates 0015

on observed entries o0 Large #: Too many “noisy” neighbors

X
\
\
\
\
\
\
\
\
\
\
\
\

>

\

\

\
\
\
\
\
\
\
\

0.013 k Large bias + Small variance
0.012 \\ o
0.011 k. T '

\\}___*_ ______ V_——V

0.0175 0.0200 0.0225 0.0250 0.0275 0.0300  0.0325

Small ;7: Few “good” neighbors p
Small bias + Large variance
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We prove a general error bound for user NN (with
actions sampled by learning policies)

(é\(a) _(9.(61))2 < i (7] _ 202 n C ) N ‘o [Ni,n’+eT_ i,n'—ele
. W /13( ﬁ Ni,n’—eT
n er
NN bias Error in NN bias

inflati t
due to threshold NN distance e |.on due. 0
learning policy

A, 2. (Z,) where X =FE[vv/]

t
2

v

min



Asymptotic intervals

e 95% intervals with asymptotic coverage as N, T — oo and n — 267 with
suitable regularity conditions:

co . 1966

I, use=NN )
, /#neighbors,
1,1.a




Non-linear double/squared robustness

* fu,0) = f(0,0) +1,(0,0)u+ o (,0)u”

o f(0.V) = f(0.0) + ££,0.0)v + £1,(0.9)V
o fl,v) = 0,00+ [,0.0)u + £,(0.00 + [u, vI Vi, 7)1

e f(u,0)+ f(0,v) — f(u,v) = f(0,0) + O((u + v)*) = Error = max{u?, v*}



