Integrating Double Robustness into **Causal Latent Factor Models**

$uv - \hat{u}\hat{v} = O(|u - \hat{u}| + |v - \hat{v}|)$

Raaz Dwivedi

$uv - ?? = O(|u - \hat{u}| \times |v - \hat{v}|)$

Online Causal Inference Seminar, May 7, 2024

Ta k out ine

- Causal Latent Factor Models: Data-rich enviroments 1.
- **Double Robustness:** A Layman's Perspective 2.
- Integrating: Two Vignettes 3.

1. Causal Latent Factor Models: Inference for modern data-rich settings

Data: N units with T measurements under (finitely) many interventions

Data: N units with T measurements under (finitely) many interventions

Online platforms

Digital health

Precision medicine

Data: N units with T measurements under (finitely) many interventions

Goal: Determine counterfactuals—units' outcomes under alternate interventions

Online platforms

Digital health

Precision medicine

Potential outcome: $Y_{i,t}^{(a)} = \theta_{i,t}^{(a)} + \varepsilon_{i,t}^{(a)} - \text{unit } i \text{ at time } t \text{ under intervention } a$ - Neyman-Rubin potential outcome framework

Causal panel data: Basic set-up

Observed data: outcome $Y_{i,t} = Y_{i,t}^{(A_{i,t})}$ and intervention $A_{i,t}$

Potential outcome: $Y_{i,t}^{(a)} = \theta_{i,t}^{(a)} + \varepsilon_{i,t}^{(a)} - \text{unit } i \text{ at time } t \text{ under intervention } a$ - Neyman-Rubin potential outcome framework

- No spill-over of treatment on future outcomes

Observed data: outcome $Y_{i,t} = Y_{i,t}^{(A_{i,t})}$ and intervention $A_{i,t}$

Goals: Estimate

• Average treatment effect (ATE): $ATE_t = \frac{1}{N} \sum_{i=1}^{N} (\theta_{i,t}^{(1)} - \theta_{i,t}^{(0)}) \leftarrow Analog of CATE for unobserved confounding$

Potential outcome: $Y_{i,t}^{(a)} = \theta_{i,t}^{(a)} + \varepsilon_{i,t}^{(a)} - \text{unit } i \text{ at time } t \text{ under intervention } a$ - Neyman-Rubin potential outcome framework

- No spill-over of treatment on future outcomes

- **Observed data:** outcome $Y_{i,t} = Y_{i,t}^{(A_{i,t})}$ and intervention $A_{i,t}$
- **Goals:** Estimate

Average treatment effect (ATE)

• Individual treatment effect (ITE

Potential outcome: $Y_{i,t}^{(a)} = \theta_{i,t}^{(a)} + \varepsilon_{i,t}^{(a)} - \text{unit } i \text{ at time } t \text{ under intervention } a$ - Neyman-Rubin potential outcome framework

- No spill-over of treatment on future outcomes

$$Analog of N = \frac{1}{N} \sum_{i=1}^{N} (\theta_{i,t}^{(1)} - \theta_{i,t}^{(0)}) \leftarrow for unobsector confound confou$$

E): ITE_{*i*,*t*} =
$$\theta_{i,t}^{(1)} - \theta_{i,t}^{(0)}$$

1. Confounding

 $(Y_{i,t}^{(1)}, Y_{i,t}^{(0)}) \not \sqcup A_{i,t}$

1. Confounding

$(Y_{i,t}^{(1)}, Y_{i,t}^{(0)}) \not \sqcup A_{i,t}$

Sufficient unobserved confounders

 $(Y_{i,t}^{(1)}, Y_{i,t}^{(0)}) \perp A_{i,t} \mid \text{Latent factors } \mathcal{F}$ Unobserved

1. Confounding

$(Y_{i,t}^{(1)}, Y_{i,t}^{(0)}) \not \sqcup A_{i,t}$

Sufficient unobserved confounders

 $(Y_{i,t}^{(1)}, Y_{i,t}^{(0)}) \perp A_{i,t} \mid \text{Latent factors } \mathcal{F}$ Unobserved

quantities of interest

$$\theta_{i,t}^{(a)} \triangleq \mathbb{E}[Y_{i,t}^{(a)} | \mathcal{F}]$$
$$p_{i,t} \triangleq \mathbb{E}[A_{i,t} | \mathcal{F}]$$

1. Confounding

$(Y_{i,t}^{(1)}, Y_{i,t}^{(0)}) \not \sqcup A_{i,t}$

Sufficient unobserved confounders

 $(Y_{i,t}^{(1)}, Y_{i,t}^{(0)}) \perp A_{i,t} \mid \text{Latent factors } \mathcal{F}$ Unobserved

quantities of interest

 $\theta_{i,t}^{(a)} \triangleq \mathbb{E}[Y_{i,t}^{(a)} | \mathcal{F}]$ $p_{i,t} \triangleq \mathbb{E}[A_{i,t} | \mathcal{F}]$

2. Complexity of unknowns

Estimating 2NT parameters with NT noisy observations

1. Confounding

$(Y_{i,t}^{(1)}, Y_{i,t}^{(0)}) \not \sqcup A_{i,t}$

Sufficient unobserved confounders

 $(Y_{i,t}^{(1)}, Y_{i,t}^{(0)}) \perp A_{i,t} \mid \text{Latent factors } \mathcal{F}$ Unobserved

quantities of interest

 $\theta_{i,t}^{(a)} \triangleq \mathbb{E}[Y_{i,t}^{(a)} | \mathcal{F}]$ $p_{i,t} \triangleq \mathbb{E}[A_{i,t} | \mathcal{F}]$

2. Complexity of unknowns

Estimating 2NT parameters with NT noisy observations

Factor model for outcomes

$$\theta_{i,t}^{(a)} \triangleq \left\langle u_i^{(a)}, v_t^{(a)} \right\rangle$$

1. Confounding

$(Y_{i,t}^{(1)}, Y_{i,t}^{(0)}) \not \sqcup A_{i,t}$

Sufficient unobserved confounders

 $(Y_{i,t}^{(1)}, Y_{i,t}^{(0)}) \perp A_{i,t} \mid \text{Latent factors } \mathcal{F}$ Unobserved

quantities of interest

 $\theta_{i,t}^{(a)} \triangleq \mathbb{E}[Y_{i,t}^{(a)} | \mathcal{F}]$ $p_{i,t} \triangleq \mathbb{E}[A_{i,t} | \mathcal{F}]$

2. Complexity of unknowns

Estimating 2NT parameters with NT noisy observations

Factor model for outcomes

$$\theta_{i,t}^{(a)} \triangleq \left\langle u_i^{(a)}, v_t^{(a)} \right\rangle$$

 $\Theta^{(a)} \triangleq [\theta_{i,t}^{(a)}]_{i \in [N], t \in [T]} \text{ always admits}$ rank $N \wedge T$ factorization.

The real assumption is that the rank is $\ll N \wedge T$.

Causal latent factor model: Common assumptions

Causal latent factor model: Common assumptions

1. Sufficient unmeasured confounders: $(Y_{i,t}^{(1)}, Y_{i,t}^{(0)}) \perp A_{i,t} | \mathcal{F}$

2. Factor model for outcomes: $\theta_{i,t}^{(a)} \triangleq \langle u_i^{(a)}, v_t^{(a)} \rangle$

3. **Positivity**/overlap: $p \le p_{i,t} \le 1 - p$

4. Random variables drawn **independently** across (*i*, *t*) after conditioning on latent factors \mathcal{F}

Can also handle dependent noise, decaying positivity, non-linear factor model

Causal latent factor model: Common assumptions

1. Sufficient unmeasured confounde

2. Factor model for outcomes: $\theta_{it}^{(a)} \triangleq$

3. **Positivity**/overlap: $p \le p_{i,t} \le 1 - p$

4. Random variables drawn **independently** across (*i*, *t*) after conditioning on latent factors \mathcal{F}

rs:
$$(Y_{i,t}^{(1)}, Y_{i,t}^{(0)}) \perp A_{i,t} \mid \mathscr{F}$$
 Estimands
 $\langle u_i^{(a)}, v_t^{(a)} \rangle$ $ATE_t = \frac{1}{N} \sum_{i=1}^N (\theta_{i,t}^{(1)} - \theta_{i,t}^{(0)})$
 $ITE_{i,t} = \theta_{i,t}^{(1)} - \theta_{i,t}^{(0)}$

Can also handle dependent noise, decaying positivity, non-linear factor model

Popular approach for estimating ATE_t: Outcome imputation

$Y_{i,t}^{(A_{i,t})} = \theta_{i,t}^{(A_{i,t})} + \varepsilon_{i,t}^{(A_{i,t})} \qquad \Theta^{(a)} \triangleq [\theta_{i,t}^{(a)}]_{i \in [N], t \in [T]}$

Popular approach for estimating ATE_f: Outcome imputation

 $Y_{i\,t}^{(A_{i,t})} = \theta_{i\,t}^{(A_{i,t})} + \varepsilon_{i\,t}^{(A_{i,t})}$

$\{Y_{i,t}: A_{i,t} = 1\} \longrightarrow$

Black-box Matrix Completion

 $\{Y_{i,t}: A_{i,t} = 0\} \longrightarrow$

Black-box Matrix Completion

$\Theta^{(a)} \triangleq \left[\theta_{i\,t}^{(a)}\right]_{i \in [N], t \in [T]}$

Popular approach for estimating ATE_f: Outcome imputation

 $Y_{it}^{(A_{i,t})} = \theta_{it}^{(A_{i,t})} + \varepsilon_{it}^{(A_{i,t})}$

$\{Y_{i,t}: A_{i,t} = 1\}$

Black-box Matrix Completion

 $\{Y_{i,t}: A_{i,t} = 0\} \longrightarrow$

Black-box Matrix Completion

$\Theta^{(a)} \triangleq \left[\theta_{i\,t}^{(a)}\right]_{i \in [N], t \in [T]}$

 $\Theta^{(0)}$ have low-rank

But what if the outcomes are not low-rank?

But what if the outcomes are not low-rank?

How do we do augmented IPW / doubly robust adjustment with unobserved confounding?

2. Double Robustness: A Layman's Perspective

When the estimand is a product

 $\theta^{\star} = \langle u, v \rangle$

• For ITE: $\theta_{i,t}^{(a)} = \langle u_i^{(a)}, v_t^{(a)} \rangle$

• For ITE: $\theta_{i,t}^{(a)} = \langle u_i^{(a)}, v_t^{(a)} \rangle$

• For ATE_{f} :

$$\frac{1}{N} \sum_{i=1}^{N} \theta_{i,t}^{(1)} = \frac{1}{N} \sum_{i=1}^{N} \mathbb{E}[Y_{i,t}^{(1)} | \mathcal{F}]$$

 $=\frac{1}{N}\sum_{i=1}^{N}\mathbb{E}\left[\theta_{i,t}^{(1)}\frac{A_{i,t}}{p_{i,t}}\right]\mathcal{F}$

• For ITE: $\theta_{i,t}^{(a)} = \langle u_i^{(a)}, v_t^{(a)} \rangle$

• For ATE_{f} :

$$\frac{1}{N} \sum_{i=1}^{N} \theta_{i,t}^{(1)} = \frac{1}{N} \sum_{i=1}^{N} \mathbb{E}[Y_{i,t}^{(1)} | \mathcal{F}]$$

 $=\langle u,v\rangle_{\mathbb{D}}$ $= \frac{1}{N} \sum_{i=1}^{N} \mathbb{E} \left[\frac{\theta_{i,t}^{(1)}}{p_{i,t}} | \mathcal{F} \right]$

• For ITE: $\theta_{i,t}^{(a)} = \langle u_i^{(a)}, v_t^{(a)} \rangle$

• For ATE_{t} :

 $\frac{1}{N}\sum_{i=1}^{N}\theta_{i,t}^{(1)} = \frac{1}{N}\sum_{i=1}^{N}\mathbb{E}[Y_{i,t}^{(1)}|\mathscr{F}] = \frac{1}{N}\sum_{i=1}^{N}\mathbb{E}\left[\theta_{i,t}^{(1)}\frac{A_{i,t}}{p_{i,t}}|\mathscr{F}\right]$

When the estimand is a product

 $\theta^{\star} = \langle u, v \rangle$

Similar structure across problems:

• For ATE with observed confounding: $\mathbb{E}[Y(1)] = \mathbb{E}\left[\mathbb{E}[Y(1)|X] \cdot \frac{A}{n(X)}\right]$

• Importance sampling: $\mathbb{E}_{X \sim \mathbb{Q}}[Y] = \mathbb{E}_{\mathbb{P}}\left[\mathbb{E}[Y|X] \cdot \frac{q(X)}{p(X)}\right]$ (e.g., off-policy evaluation, covariate shift, ...)
Omitting the inner product notation for clarity

Omitting the inner product notation for clarity

• $|uv - \hat{u}\hat{v}| \le |uv - \hat{u}v| + |\hat{u}v - \hat{u}\hat{v}|$

$$= O(|u - \hat{u}| + |v - \hat{v}|)$$

Omitting the inner product notation for clarity

• $|uv - \hat{u}\hat{v}| \le |uv - \hat{u}v| + |\hat{u}v - \hat{u}\hat{v}| = O(|u - \hat{u}| + |v - \hat{v}|)$

• $uv - ?? = (u - \hat{u}) \times (v - \hat{v})$

Omitting the inner product notation for clarity

• $|uv - \hat{u}\hat{v}| \le |uv - \hat{u}v| + |\hat{u}v - \hat{u}\hat{v}| = O(|u - \hat{u}| + |v - \hat{v}|)$

•
$$vv - ?? = (u - \hat{u}) \times (v - \hat{v})$$

= $uv - \hat{u}v - u\hat{v} + \hat{u}\hat{v}$

Omitting the inner product notation for clarity

• $|uv - \hat{u}\hat{v}| \leq |uv - \hat{u}v| + |\hat{u}v - \hat{u}\hat{v}|$

•
$$uv - ?? = (u - \hat{u}) \times (v - \hat{v})$$

$$= uv - \hat{u}v - u\hat{v} + \hat{u}\hat{v}$$

 $\hat{y} = \hat{u}v + u\hat{v} - \hat{u}\hat{v}$

$$= O(|u - \hat{u}| + |v - \hat{v}|)$$

Double robustness, debiased/double machine learning...

[... Cassel+ '77, Robinson '88, Särndal+ '89, Robins+ '94, '95, '08, '09, Newey+ '94, '18, Bickel+ '98, van der Laan+ '03, Lunceford+ '04, Davidian+ '05, Li+ '11, Jiang+ '15, Chernozhukov+ '18, Hirshberg+ '18, Diaz '19, Arkhangelsky+ '21, Dorn+ '21 ...]

Simplified view of doubly robust estimator for uv

Simplified view of doubly robust estimator for uv

 $\hat{u}\hat{v}$ $\int \text{Estimate}$ $\hat{u}v + u\hat{v} - \hat{u}\hat{v}$

$$O(|\hat{u} - u| + |\hat{v} - v|)$$

Error
$$\downarrow$$
$$O(|\hat{u} - u| \times |\hat{v} - v|)$$

Simplified view of doubly robust estimator for uv

 $\hat{u}\hat{v}$ $\int \text{Estimate}$ $\hat{u}v + u\hat{v} - \hat{u}\hat{v}$

Problem setting

ATE with observed confounding

Off policy evaluation

[This talk] ATE with unobserved confounding

[This talk] ITE with unobserved confounding

$$O(|\hat{u} - u| + |\hat{v} - v|)$$

Error
$$\downarrow$$
$$O(|\hat{u} - u| \times |\hat{v} - v|)$$

U	${\cal V}$
conditional outcome mean	propensity function
mean reward	importance ratio
outcome matrix	propensity matrix
user factor	time factor

 $\hat{u}v + u\hat{v} - \hat{u}\hat{v}$

3. Integrating double robustness with causal latent factor model

Part 2: Doubly robust estimation of $ITE_{i,t} = \theta_{i,t}^{(1)} - \theta_{i,t}^{(0)}$

 $\hat{u}\hat{v}$ $\hat{u}v + u\hat{v} - \hat{u}\hat{v}$

Part 1: Doubly robust estimation of $ATE_t = \frac{1}{N} \sum_{i,t}^{N} (\theta_{i,t}^{(1)} - \theta_{i,t}^{(0)})$

Alberto Abadie

Anish Agarwal

https://arxiv.org/abs/2402.11652

Doubly robust estimation of ATE_t = $\frac{1}{N} \sum_{i=1}^{N} (\theta_{i,t}^{(1)} - \theta_{i,t}^{(0)})$

(CATE for unobserved confounding)

Abhin Shah

How do we do augmented IPW / doubly robust adjustment with unobserved confounding?

 $Y_{i,t} = \theta_{i,t}^{(A_{i,t})} + \varepsilon_{i,t}^{(A_{i,t})}$

 $\Theta^{(a)} \triangleq [\theta_{i,t}^{(a)}]_{i \in [N], t \in [T]}$

How do we do augmented IPW / doubly robust adjustment with unobserved confounding?

 $Y_{i,t} = \theta_{i,t}^{(A_{i,t})} + \varepsilon_{i,t}^{(A_{i,t})}$

$\{Y_{i,t}: A_{i,t} = 1\} \longrightarrow$

Matrix Completion

 $\{Y_{i,t}: A_{i,t} = 0\} \longrightarrow$

Matrix Completion

$\Theta^{(a)} \triangleq [\theta_{i,t}^{(a)}]_{i \in [N], t \in [T]}$

How do we do augmented IPW / doubly robust adjustment with unobserved confounding?

 $Y_{i,t} = \theta_{i,t}^{(A_{i,t})} + \varepsilon_{i,t}^{(A_{i,t})}$

$\{Y_{i,t} : A_{i,t} = 1\}$

Matrix Completion

 $\{Y_{i,t}: A_{i,t} = 0\} \longrightarrow$

Matrix Completion

 $\Theta^{(a)} \triangleq [\theta_{i,t}^{(a)}]_{i \in [N], t \in [T]}$

How do we do augmented IPW / doubly robust adjustment with unobserved confounding?

 $Y_{i,t} = \theta_{i,t}^{(A_{i,t})} + \varepsilon_{i,t}^{(A_{i,t})}$

$\{Y_{i,t} : A_{i,t} = 1\}$

Matrix Completion

 $\{Y_{i,t}: A_{i,t} = 0\}$

Matrix Completion $\Theta^{(a)} \triangleq [\theta_{i,t}^{(a)}]_{i \in [N], t \in [T]}$

 \rightarrow $\hat{\Theta}^{(1)}$ $\widehat{\text{ATE}}_{t}^{\text{OI}} = \frac{1}{N} \sum_{i,t}^{N} (\widehat{\theta}_{i,t}^{(1)} - \widehat{\theta}_{i,t}^{(0)})$ $\hat{\mathbf{\Theta}}^{(0)}$ \checkmark Works well if $\Theta^{(1)}$ and $\Theta^{(0)}$ have low-ranks

There is one other matrix that we can leverage!

The Intervention Matrix A!

1	0	1	0	1	0
1	1	0	0	0	1
1	1	1	0	0	1
0	0	1	1	1	1
1	1	0	1	0	1
0	0	1	1	0	1

There is one other matrix that we can leverage!

The Intervention Matrix A!

1	0	1	0	1	0
1	1	0	0	0	1
1	1	1	0	0	1
0	0	1	1	1	1
1	1	0	1	0	1
0	0	1	1	0	1

But its fully observed?

There is one other matrix that we can leverage!

The Intervention Matrix A!

1	0	1	0	1	0
1	1	0	0	0	1
1	1	1	0	0	1
0	0	1	1	1	1
1	1	0	1	0	1
0	0	1	1	0	1

But its fully observed?

What about $P = \mathbb{E}[A | \mathcal{F}]$?

There is one other matrix that we can leverage.

The Intervention Matrix A!

1	0	1	0	1	0
1	1	0	0	0	1
1	1	1	0	0	1
0	0	1	1	1	1
1	1	0	1	0	1
0	0	1	1	0	1

But its fully observed?

What about $P = \mathbb{E}[A | \mathcal{F}]$?

Matrix **Estimation**

IPW ATE_t

There is one other matrix that we can everage.

The Intervention Matrix A!

1	0	1	0	1	0
1	1	0	0	0	1
1	1	1	0	0	1
0	0	1	1	1	1
1	1	0	1	0	1
0	0	1	1	0	1

But its fully observed?

What about $P = \mathbb{E}[A | \mathcal{F}]$?

IPW ATE_t

 \checkmark Works well if *P* is low-rank

${\sf smooth} f$

$p_{i,t} = p$

р	р	р	р
р	р	р	р
р	р	р	р
р	р	р	р

${\sf smooth} f$

 $p_{i,t} = p$

р	р	р	р
р	р	р	р
р	р	р	р
р	р	р	р

р1	р1	р1	р1
p2	p2	p2	p2
р3	p3	p3	р3
р4	р4	р4	р4

smooth f

$p_{i,t} = p_i \text{ or } p_t$

 $p_{i,t} = p$

р	р	р	р
р	р	р	р
р	р	р	р
р	р	р	р

р1	р1	р1	р1
p2	p2	p2	p2
р3	p3	р3	р3
р4	р4	р4	р4

 ${\sf smooth} f$

$p_{i,t} = p_i \text{ or } p_t$

	$p_{i,t} =$	U _i T	$f(X_j)$
--	-------------	------------------	----------

p11	p12	p13	р1
p21	p22	p23	p2
p31	p32	p33	р3
p41	p42	p43	р4

So..can we design estimators that are robust to either outcome matrix or propensity matrix being low rank?

So..can we design estimators that are robust to either outcome matrix or propensity matrix being low rank?

Formula

Formula

Estimate

OI estimate

Formula

 $\frac{1}{N} \sum_{i=1}^{N} \theta_{i,t}^{(1)}$ $= \frac{1}{N} \sum_{i=1}^{N} \mathbb{E}[Y_{i,t}^{(1)} | \mathcal{F}]$ $= \frac{1}{N} \sum_{i=1}^{N} \mathbb{E} \left[Y_{i,t} \frac{A_{i,t}}{p_{i,t}} | \mathcal{F} \right]$ Estimate

Ol estimate

IPW estimate

Formula

 $\frac{1}{N} \sum_{i,t}^{N} \theta_{i,t}^{(1)}$ $= \frac{1}{N} \sum_{i,t}^{N} \mathbb{E}[Y_{i,t}^{(1)} | \mathcal{F}]$ $= \frac{1}{N} \sum_{i=1}^{N} \mathbb{E} \left[\begin{array}{c} A_{i,t} \\ Y_{i,t} \\ p_{i,t} \end{array} \middle| \mathcal{F} \right]$

 $= \frac{1}{N} \sum_{i=1}^{N} \mathbb{E} \left[\frac{\theta_{i,t}^{(1)}}{p_{i,t}} | \mathcal{F} \right]$ l=1L $=\langle u,v\rangle_{\mathbb{P}}$

Estimate

OI estimate

IPW estimate

Formula

 $\frac{1}{N} \sum_{i,t}^{N} \theta_{i,t}^{(1)}$ $= \frac{1}{N} \sum_{i,t}^{N} \mathbb{E}[Y_{i,t}^{(1)} | \mathcal{F}]$ $= \frac{1}{N} \sum_{i=1}^{N} \mathbb{E} \left[\begin{array}{c} X_{i,t} \\ Y_{i,t} \\ p_{i,t} \end{array} \middle| \mathcal{F} \right]$

 $= \frac{1}{N} \sum_{i=1}^{N} \mathbb{E} \left[\frac{\theta_{i,t}^{(1)}}{p_{i,t}} | \mathcal{F} \right]$ $=\langle u,v\rangle_{\mathbb{P}}$

Estimate

Ol estimate

 $\frac{1}{N} \sum_{i=1}^{N} Y_{i,t} \frac{A_{i,t}}{\hat{p}_{i,t}}$

IPW estimate

 $\frac{1}{N} \sum_{i=1}^{N} \hat{\theta}_{i,t}^{(1)} \cdot \frac{A_{i,t}}{\hat{p}_{i,t}}$ $\approx \langle \hat{u}, \hat{v} \rangle_{\mathbb{P}}$ error $O(\|\hat{u} - u\| + \|\hat{v} - v\|)$

Need to identify the terms from the observed data...

All events/expectations conditional

 $\langle \hat{u}, v \rangle_{\mathbb{P}} + \langle u, \hat{v} \rangle_{\mathbb{P}} - \langle \hat{u}, \hat{v} \rangle_{\mathbb{P}}$ error $O(\|\hat{u} - u\| \times \|\hat{v} - v\|)$

on	F
----	---

Need to identify the terms from the observed data...

Assuming $\hat{\theta}_{i,t}^{(1)}, \hat{p}_{i,t} \perp A_{i,t}$

$$= \frac{1}{N} \sum_{i=1}^{N} \mathbb{E} \begin{bmatrix} \theta_{i,t}^{(1)} \frac{A_{i,t}}{p_{i,t}} | \mathcal{F} \end{bmatrix}$$
$$\stackrel{\uparrow}{=} \langle u, v \rangle_{\mathbb{P}}$$

All events/expectations conditional

on	F
----	---

Need to identify the terms from the observed data...

Assuming $\hat{p}_{i,t} \perp Y_{i,t}^{(1)}, A_{i,t}$

Assuming $\hat{\theta}_{it}^{(1)}, \hat{p}_{it} \perp A_{i,t}$

 $= \frac{1}{N} \sum_{i=1}^{N} \mathbb{E} \left[\frac{\theta_{i,t}^{(1)}}{p_{i,t}} | \mathcal{F} \right]$ $=\langle u,v\rangle_{\mathbb{P}}$

All events/expectations conditional

$$\mathbb{E}\left[\theta_{i,t}^{(1)}\frac{A_{i,t}}{\hat{p}_{i,t}}\right] = \mathbb{E}\left[Y_{i,t}^{(1)}\frac{A_{i,t}}{\hat{p}_{i,t}}\right] = \mathbb{E}\left[Y_{i,t}\frac{A_{i,t}}{\hat{p}_{i,t}}\right]$$

$$\mathbb{E}\left[\hat{\theta}_{i,t}^{(1)}\frac{A_{i,t}}{\hat{p}_{i,t}}\right]$$

$$\mathbb{E}\left[\hat{\theta}_{i,t}^{(1)}\frac{A_{i,t}}{\hat{p}_{i,t}}\right]$$

$$\left\langle \hat{u}, v \rangle_{\mathbb{P}} + \langle u, \hat{v} \rangle_{\mathbb{P}} - \langle \hat{u}, \hat{v} \rangle_{\mathbb{P}}$$
error $O(\|\hat{u} - u\| \times \|\hat{v} - v\|)$

on	F
----	---

Need to identify the terms from the observed data...

Assuming $\hat{\theta}_{it}^{(1)} \perp A_{i,t}$

Assuming $\hat{p}_{i,t} \perp Y_{i,t}^{(1)}, A_{i,t}$

Assuming $\hat{\theta}_{i,t}^{(1)}, \hat{p}_{i,t} \perp A_{i,t}$

 $= \frac{1}{N} \sum_{i=1}^{N} \mathbb{E} \left[\frac{\theta_{i,t}^{(1)}}{p_{i,t}} | \mathcal{F} \right]$ $=\langle u,v\rangle_{\mathbb{P}}$

All events/expectations conditional

$$\mathbb{E}[\hat{\theta}_{i,t}^{(1)} \frac{A_{i,t}}{p_{i,t}}] = \hat{\theta}_{i,t}^{(1)} \mathbb{E}\left[\frac{A_{i,t}}{p_{i,t}}\right] = \hat{\theta}_{i,t}^{(1)}$$

$$\int \mathbb{E}\left[\theta_{i,t}^{(1)} \frac{A_{i,t}}{\hat{p}_{i,t}}\right] = \mathbb{E}\left[Y_{i,t}^{(1)} \frac{A_{i,t}}{\hat{p}_{i,t}}\right] = \mathbb{E}\left[Y_{i,t} \frac{A_{i,t}}{\hat{p}_{i,t}}\right]$$

$$\mathbb{E}\left[\hat{\theta}_{i,t}^{(1)} \frac{A_{i,t}}{\hat{p}_{i,t}}\right]$$

$$\mathbb{E}\left[\hat{\theta}_{i,t}^{(1)} \frac{A_{i,t}}{\hat{p}_{i,t}}\right]$$

$$\langle \hat{u}, v \rangle_{\mathbb{P}} + \langle u, \hat{v} \rangle_{\mathbb{P}} - \langle \hat{u}, \hat{v} \rangle_{\mathbb{P}}$$

$$\text{error } O(\|\hat{u} - u\| \times \|\hat{v} - v\|)$$

on	F
----	---

And thus arrives the doubly robust estimate

*Assuming $\hat{p}_{i,t} \perp Y_{i,t}^{(1)}, A_{i,t}$

*Assuming $\hat{\theta}_{it}^{(1)}, \hat{p}_{i,t} \perp A_{i,t}$

(*in a block sense)

 $\mathbb{E}\left[\hat{\theta}_{i,t}^{(1)}\frac{A_{i,t}}{p_{i,t}}\right] = \hat{\theta}_{i,t}^{(1)}\mathbb{E}\left[\frac{A_{i,t}}{p_{i,t}}\right] = \hat{\theta}_{i,t}^{(1)}$ $\mathbb{E}\left[\theta_{i,t}^{(1)}\frac{A_{i,t}}{\hat{p}}\right] = \mathbb{E}\left[Y_{i,t}^{(1)}\frac{A_{i,t}}{\hat{p}}\right] = \mathbb{E}\left[Y_{i,t}\frac{A_{i,t}}{\hat{p}}\right]$ $\mathbb{E}\left[\hat{\theta}_{i,t}^{(1)}\frac{A_{i,t}}{\hat{n}_{i,t}}\right]$ $\frac{1}{N}\sum_{i,t}^{N} \hat{\theta}_{i,t}^{(1)} + Y_{i,t}\frac{A_{i,t}}{\hat{p}_{i,t}} - \hat{\theta}_{i,t}^{(1)}\frac{A_{i,t}}{\hat{p}_{i,t}}$ $\langle \hat{u}, v \rangle_{\mathbb{P}} + \langle u, \hat{v} \rangle_{\mathbb{P}} - \langle \hat{u}, \hat{v} \rangle_{\mathbb{P}}$ error $O(\|\hat{u} - u\| \times \|\hat{v} - v\|)$

 $\widehat{\text{ATE}}_{t}^{\text{DR}} = \frac{1}{N} \sum_{i=1}^{N} \left(\hat{\theta}_{i,t}^{(1)} + Y_{i,t} \frac{A_{i,t}}{\hat{p}_{i,t}} - \hat{\theta}_{i,t}^{(1)} \frac{A_{i,t}}{\hat{p}_{i,t}} \right)$ $-\left(\hat{\theta}_{i,t}^{(0)} + Y_{i,t}\frac{1-A_{i,t}}{1-\hat{p}_{i,t}} - \hat{\theta}_{i,t}^{(0)}\frac{1-A_{i,t}}{1-\hat{p}_{i,t}}\right)$ $\langle \hat{u}, v \rangle_{\mathbb{D}} + \langle u, \hat{v} \rangle_{\mathbb{D}} - \langle \hat{u}, \hat{v} \rangle_{\mathbb{D}}$

< ú

$$Y_{i,t} \frac{A_{i,t}}{\hat{p}_{i,t}} - \hat{\theta}_{i,t}^{(1)} \frac{A_{i,t}}{\hat{p}_{i,t}} \Big)$$

$$(0)_{i,t} + Y_{i,t} \frac{1 - A_{i,t}}{1 - \hat{p}_{i,t}} - \hat{\theta}_{i,t}^{(0)} \frac{1 - A_{i,t}}{1 - \hat{p}_{i,t}} \Big)$$

$$(\hat{u}, v)_{\mathbb{P}} + \langle u, \hat{v} \rangle_{\mathbb{P}} - \langle \hat{u}, \hat{v} \rangle_{\mathbb{P}}$$

(ú

Baselines

$$\widehat{\text{ATE}}_{t}^{\text{OI}} = \frac{1}{N} \sum_{i=1}^{N} (\hat{\theta}_{i,t}^{(1)} - \hat{\theta}_{i,t}^{(0)}) \approx \langle \hat{u}, v \rangle_{\mathbb{P}}$$

$$Y_{i,t} \frac{A_{i,t}}{\hat{p}_{i,t}} - \hat{\theta}_{i,t}^{(1)} \frac{A_{i,t}}{\hat{p}_{i,t}} \Big)$$

$$(0)_{i,t} + Y_{i,t} \frac{1 - A_{i,t}}{1 - \hat{p}_{i,t}} - \hat{\theta}_{i,t}^{(0)} \frac{1 - A_{i,t}}{1 - \hat{p}_{i,t}} \Big)$$

$$(\hat{u}, v)_{\mathbb{P}} + \langle u, \hat{v} \rangle_{\mathbb{P}} - \langle \hat{u}, \hat{v} \rangle_{\mathbb{P}}$$

 $\langle i$

Baselines

$$\widehat{\text{ATE}}_{t}^{\text{OI}} = \frac{1}{N} \sum_{i=1}^{N} (\hat{\theta}_{i,t}^{(1)} - \hat{\theta}_{i,t}^{(0)}) \approx \langle \hat{u}, v \rangle_{\mathbb{P}}$$

$$Y_{i,t} \frac{A_{i,t}}{\hat{p}_{i,t}} - \hat{\theta}_{i,t}^{(1)} \frac{A_{i,t}}{\hat{p}_{i,t}} \Big)$$

$$\begin{pmatrix} 0 \\ \dot{p}_{i,t} \end{pmatrix} + Y_{i,t} \frac{1 - A_{i,t}}{1 - \hat{p}_{i,t}} - \hat{\theta}_{i,t}^{(0)} \frac{1 - A_{i,t}}{1 - \hat{p}_{i,t}} \Big)$$

$$\hat{u}, v \rangle_{\mathbb{P}} + \langle u, \hat{v} \rangle_{\mathbb{P}} - \langle \hat{u}, \hat{v} \rangle_{\mathbb{P}}$$

$$\widehat{\text{ATE}}_{t}^{\text{IPW}} = \frac{1}{N} \sum_{i=1}^{N} Y_{i,t} \left(\frac{A_{i,t}}{\hat{p}_{i,t}} - \frac{1 - A_{i,t}}{1 - \hat{p}_{i,t}} \right) \approx \langle u, v \rangle$$

Block independence for nuisance estimates

 $\hat{p}_{\mathcal{S}} \perp Y_{\mathcal{S}}^{(1)}, Y_{\mathcal{S}}^{(0)}$

 $\hat{\Theta}^{(1)}_{\mathcal{S}}, \hat{\Theta}^{(0)}_{\mathcal{S}}, \hat{p}_{\mathcal{S}} \perp A_{\mathcal{S}}$

Block independence for nuisance estimates

Via Cross-Fitted Matrix Completion

Use or	nly these	three m	atrix	
blocks	to estim	ate/com	plete	
	bloc	< S —		

 $\hat{p}_{\mathcal{S}} \perp Y_{\mathcal{S}}^{(1)}, Y_{\mathcal{S}}^{(0)}$

 $\hat{\Theta}^{(1)}_{\mathcal{S}}, \hat{\Theta}^{(0)}_{\mathcal{S}}, \hat{p}_{\mathcal{S}} \perp A_{\mathcal{S}}$

Informal theorem [Abadie-Agarwal-**Dwivedi**-Shah, '24] Fix *t*. If for all *i*, we have

- unobserved confounding $(Y_{i,t}^{(1)}, Y_{i,t}^{(0)}) \perp A_{i,t} \mid \mathscr{F}$,
- positivity $p \leq P_{i,t} \leq 1 p$,
- independent noise, and
- block independent matrix estimates,

Informal theorem [Abadie-Agarwal-**Dwivedi**-Shah, '24] Fix *t*. If for all *i*, we have

• unobserved confounding $(Y_{i,t}^{(1)}, Y_{i,t}^{(0)}) \perp A_{i,t} \mid \mathscr{F}$,

• positivity
$$p \leq P_{i,t} \leq 1 - p$$
,

- independent noise, and
- block independent matrix estimates,

then with high probability,

 $|\operatorname{ATE}_{t} - \widehat{\operatorname{ATE}}_{t}^{\mathsf{DR}}| \lesssim \frac{1}{p} \left[\frac{\|\Theta_{t}^{(a)} - \hat{\Theta}_{t}^{(a)}\|_{2}}{\sqrt{N}} \times \frac{\|P_{t} - \hat{P}_{t}\|_{2}}{\sqrt{N}} + \frac{1}{\sqrt{N}} \right]$

Informal theorem [Abadie-Agarwal-Dwivedi-Shah, '24] Fix *t*. If for all *i*, we have

- unobserved confounding $(Y_{i,t}^{(1)}, Y_{i,t}^{(0)}) \perp A_{i,t} \mid \mathscr{F}$,
- positivity $p \leq P_{i,t} \leq 1 p$,
- independent noise, and
- block independent matrix estimates,

then with high probability, $|\operatorname{ATE}_{t} - \widehat{\operatorname{ATE}}_{t}^{\mathsf{DR}}| \lesssim \frac{1}{p} \left[\frac{\|\Theta_{t}^{(a)} - \hat{\Theta}_{t}^{(a)}\|_{2}}{\sqrt{N}} \times \frac{\|P_{t} - \hat{P}_{t}\|_{2}}{\sqrt{N}} \right]$

 $|\operatorname{ATE}_t - \operatorname{ATE}_t^{\mathsf{DR}}| \lesssim \frac{1}{p}$

$$\frac{\|\Theta_t^{(a)} - \hat{\Theta}_t^{(a)}\|_2}{\sqrt{N}} \times \frac{\|P_t - \hat{P}_t\|_2}{\sqrt{N}} + \frac{1}{\sqrt{N}} \right]$$

Bias

 $|\operatorname{ATE}_t - \operatorname{ATE}_t^{\mathsf{DR}}| \lesssim \frac{1}{p}$

If **bias** =
$$o_p(N^{-1/2})$$

 $\overline{N}(ATE_t - ATE_t^{DR}) \longrightarrow \mathcal{N}(0,\sigma^2)$
 $\frac{\|\Theta_t^{(a)} - \hat{\Theta}_t^{(a)}\|_2}{\sqrt{N}} \times \frac{\|P_t - \hat{P}_t\|_2}{\sqrt{N}} + \frac{1}{\sqrt{N}} \end{bmatrix}$
Bias

Generic matrix completion

- No asymptotic normality
- Slow error rates with large ranks

 $|\operatorname{ATE}_t - \operatorname{ATE}_t| \lesssim \frac{1}{p}$

If **bias** =
$$o_p(N^{-1/2})$$

 $\overline{N}(ATE_t - ATE_t^{DR}) \longrightarrow \mathcal{N}(0,\sigma^2)$
 $\frac{\|\Theta_t^{(a)} - \hat{\Theta}_t^{(a)}\|_2}{\sqrt{N}} \times \frac{\|P_t - \hat{P}_t\|_2}{\sqrt{N}} + \frac{1}{\sqrt{N}} \end{bmatrix}$
Bias

/N

Generic matrix completion

- No asymptotic normality
- Slow error rates with large ranks

Doubly robust to the rank of outcome & propensity matrices

If **bias** =
$$o_p(N^{-1/2})$$

 $T(ATE_t - ATE_t^{DR}) \longrightarrow \mathcal{N}(0, \sigma^2)$

$$|\operatorname{ATE}_{t} - \widehat{\operatorname{ATE}}_{t}^{\mathsf{DR}}| \lesssim \frac{1}{p} \left[\frac{\|\Theta_{t}^{(a)} - \hat{\Theta}_{t}^{(a)}\|_{2}}{\sqrt{N}} \times \frac{\|P_{t} - \hat{P}_{t}\|_{2}}{\sqrt{N}} + \frac{1}{\sqrt{N}} \right]$$

Simulation results with growing ranks

Uniform factors with rank($\Theta^{(a)}$) = $N^{1/4}$, Rank(P) = $N^{1/5}$

Simulation results with growing ranks

Uniform factors with rank($\Theta^{(a)}$) = $N^{1/4}$, Rank(P) = $N^{1/5}$

Simulation results with growing ranks

Uniform factors with rank($\Theta^{(a)}$) = $N^{1/4}$, Rank(P) = $N^{1/5}$

Simulation results with growing ranks Uniform factors with rank($\Theta^{(a)}$) = $N^{1/4}$, Rank(P) = $N^{1/5}$

Simulation results with growing ranks Uniform factors with rank($\Theta^{(a)}$) = $N^{1/4}$, Rank(P) = $N^{1/5}$

But, what if the outcomes do have a low-rank structure?

Can we hope to estimate $\text{ITE}_{i,t} = \theta_{i,t}^{(1)} - \theta_{i,t}^{(0)}$?

29

But, what if the outcomes do have a low-rank structure?

Can we hope to estimate $\text{ITE}_{i,t} = \theta_{i,t}^{(1)} - \theta_{i,t}^{(0)}$?

In this talk, henceforth assume $p_{i,t} \equiv p$

Part 2: **Doubly robust nearest neighbors for** estimating ITE

Katherine Tian

Sabina Tomkins

Predrag Klasnja

https://arxiv.org/abs/2202.06891 https://arxiv.org/abs/2211.14297

Susan Murphy

Devavrat Shah

A common approach for ITE: Nearest neighbors

 $Y_{i,t} = \theta_i$

$$P_{i,t}^{(A_{i,t})} + \text{noise}_{i,t}$$

Freatment = a	Treatment $\neq a$		
		Estimate $\theta_{i,t}^{(a)}$	

A common approach for ITE: Nearest neighbors

$$Y_{i,t} = \theta_{i,t}^{(A_{i,t})} + \text{noise}_{i,t}$$

Tmeasurements

Freatment = a	Treatment $\neq a$		
		Estimate $\theta_{i,t}^{(a)}$	

31

A common approach for ITE: Nearest neighbors $Y_{i,t} = \theta_{i,t}$

1. Compute distance b/w users i and j

$$\rho_{i,j}^{(a)} = \frac{\sum_{t' \neq t} (Y_{i,t'} - Y_{j,t'})^2 \cdot \mathbf{1}(A_{i,t'} = A_{j,t'} = a)}{\sum_{t' \neq t} \mathbf{1}(A_{i,t'} = A_{j,t'} = a)}$$

$$P_{i,t}^{(A_{i,t})} + \text{noise}_{i,t}$$

		Estimate $\theta_{i,t}^{(a)}$	
Freatment = a	Treatment $\neq a$		

A common approach for ITE: Nearest neighbors $Y_{i,t} = \theta_{i,t}$

1. Compute distance b/w users *i* and *j*

$$\rho_{i,j}^{(a)} = \frac{\sum_{t' \neq t} (Y_{i,t'} - Y_{j,t'})^2 \cdot \mathbf{1}(A_{i,t'} = A_{j,t'} = a)}{\sum_{t' \neq t} \mathbf{1}(A_{i,t'} = A_{j,t'} = a)}$$

2. Average neighbor outcomes at time t

$$\hat{\theta}_{i,t,\text{user-NN}}^{(a)} = \frac{\sum_{j=1}^{N} Y_{j,t} \mathbf{1}(\rho_{i,j}^{(a)} \leq \eta, A_{j,t} = a)}{\sum_{j=1}^{N} \mathbf{1}(\rho_{i,j}^{(a)} \leq \eta, A_{j,t} = a)}$$

Nusers

$$P_{i,t}^{(A_{i,t})} + \text{noise}_{i,t}$$

		Treatment $\neq a$	reatment = a
	Estimate $\theta_{i,t}^{(a)}$		

A common approach for ITE: Nearest neighbors $Y_{i,t} = \theta$

1. Compute distance b/w users *i* and *j*

$$\rho_{i,j}^{(a)} = \frac{\sum_{t' \neq t} (Y_{i,t'} - Y_{j,t'})^2 \cdot \mathbf{1}(A_{i,t'} = A_{j,t'} = a)}{\sum_{t' \neq t} \mathbf{1}(A_{i,t'} = A_{j,t'} = a)}$$

2. Average neighbor outcomes at time t

$$\widehat{\theta}_{i,t,\text{user-NN}}^{(a)} = \frac{\sum_{j=1}^{N} Y_{j,t} \mathbf{1}(\rho_{i,j}^{(a)} \leq \eta, A_{j,t} = a)}{\sum_{j=1}^{N} \mathbf{1}(\rho_{i,j}^{(a)} \leq \eta, A_{j,t} = a)}$$

3. Do this procedure for a = 0 and 1.

$$P_{i,t}^{(A_{i,t})} + \text{noise}_{i,t}$$

	Treatment	Treatment		
	=a	$\neq a$		
4			Estimate $\theta^{(a)}$	
l			<i>i,t</i>	
$\mathbf{+}$				
Nus	ers			

 $|\hat{\theta}_{i,t,\text{user-NN}}^{(a)} - \theta_{i,t}^{(a)}| \lesssim \sqrt{\eta} + \frac{1}{(\# overlap)^{1/4}} + \frac{1}{\sqrt{p \cdot \# Row \ Neighbors \ within \ \eta}}$

overlap = $\sum \mathbf{1}(A_{i,t'} = A_{j,t'} = a) (\approx p^2 T \text{ for } p_{i,t} \equiv p)$ $t' \neq t$

$|\hat{\theta}_{i,t,\text{user-NN}}^{(a)} - \theta_{i,t}^{(a)}| \lesssim \sqrt{\eta} + \frac{1}{(\# overlap)^{1/4}} + \frac{1}{\sqrt{p \cdot \# Row \ Neighbors \ within \ \eta}}$

 $t' \neq t$

of size M

Row factor distribution

overlap = $\sum \mathbf{1}(A_{i,t'}=A_{j,t'}=a)$ ($\approx p^2T$ for $p_{i,t}\equiv p$)

Error rates after tuning η

 $t' \neq t$

of size M

Row factor distribution

Uniform in $[-1,1]^d$

Two variants of nearest neighbors
Two variants of nearest neighbors

User-NN

Two variants of nearest neighbors

User-NN

Time-NN

How do we improve the <u>slow error rates</u>?

$$|\hat{\theta}_{i,t,\text{user-NN}}^{(a)} - \theta_{i,t}^{(a)}| = \tilde{O}\left(\frac{1}{T^{1/4}} + \frac{1}{\sqrt{N}}\right)$$
$$\downarrow \hat{\theta}_{i,t,\text{time-NN}}^{(a)} - \theta_{i,t}^{(a)}| = \tilde{O}\left(\frac{1}{N^{1/4}} + \frac{1}{\sqrt{T}}\right)$$

How do we improve the <u>slow error rates</u>?

$$|\hat{\theta}_{i,t,\text{user-NN}}^{(a)} - \theta_{i,t}^{(a)}| = \tilde{O}\left(\frac{1}{T^{1/4}} + \frac{1}{\sqrt{N}}\right)$$
$$\downarrow \hat{\theta}_{i,t,\text{time-NN}}^{(a)} - \theta_{i,t}^{(a)}| = \tilde{O}\left(\frac{1}{N^{1/4}} + \frac{1}{\sqrt{T}}\right)$$

Simulation results with N=T Uniform factors on $[-0.5, 0.5]^4$, Gaussian noise, pooled ε -greedy policy ($\varepsilon = 0.5$)

How do we improve the <u>slow error rates</u>?

$$|\hat{\theta}_{i,t,\text{user-NN}}^{(a)} - \theta_{i,t}^{(a)}| = \tilde{O}\left(\frac{1}{T^{1/4}} + \frac{1}{\sqrt{N}}\right)$$
$$\downarrow \hat{\theta}_{i,t,\text{time-NN}}^{(a)} - \theta_{i,t}^{(a)}| = \tilde{O}\left(\frac{1}{N^{1/4}} + \frac{1}{\sqrt{T}}\right)$$

Simulation results with N=T pooled ε -greedy policy ($\varepsilon = 0.5$)

34

$\langle \hat{u}_i, v_t \rangle + \langle u_i, \hat{v}_t \rangle - \langle \hat{u}_i, \hat{v}_t \rangle$

	Estimate $ heta_{i,t}$	time-NN $Y_{i,t'}$	
	user-NN $Y_{j,t}$		

Let *j* be such that $\rho_{i,j}^{(a)} \leq \eta \& A_{j,t} = a$ *t'* be such that $\rho_{t,t'}^{(a)} \leq \eta \& A_{i,t'} = a$

 $\langle \hat{u}_i, v_t \rangle + \langle u_i, \hat{v}_t \rangle - \langle \hat{u}_i, \hat{v}_t \rangle$

	Estimate $ heta_{i,t}$	time-NN $Y_{i,t'}$	
	user-NN $Y_{j,t}$		

Let *j* be such that $\rho_{i,j}^{(a)} \leq \eta \& A_{j,t} = a$ *t'* be such that $\rho_{t,t'}^{(a)} \leq \eta \& A_{i,t'} = a$

$$\widehat{\theta}_{i,t,\text{user-NN}}^{(a)} = Y_{j,t} \approx \langle u_j, v_t \rangle = \langle \hat{u}_i, v_t \rangle$$

 $\langle \hat{u}_i, v_t \rangle + \langle u_i, \hat{v}_t \rangle - \langle \hat{u}_i, \hat{v}_t \rangle$

	Estimate $ heta_{i,t}$	time-NN $Y_{i,t'}$	
	user-NN $Y_{j,t}$		

Let *j* be such that $\rho_{i,j}^{(a)} \leq \eta \& A_{j,t} = a$ *t'* be such that $\rho_{t,t'}^{(a)} \leq \eta \& A_{i,t'} = a$

 $\widehat{\theta}_{i,t,\text{time-NN}}^{(a)} = Y_{i,t'} \approx \langle u_i, v_{t'} \rangle = \langle u_i, \hat{v}_t \rangle$

$$\langle \hat{u}_i, v_t \rangle + \langle u_i, \hat{v}_t \rangle - \langle \hat{u}_i, \hat{v}_t \rangle$$

	Estimate $ heta_{i,t}$	time-NN $Y_{i,t'}$	
	user-NN $Y_{j,t}$		

Let *j* be such that $\rho_{i,j}^{(a)} \leq \eta \& A_{j,t} = a$ *t'* be such that $\rho_{t,t'}^{(a)} \leq \eta \& A_{i,t'} = a$

$$\hat{\theta}_{i,t,\text{user-NN}}^{(a)} = Y_{j,t} \approx \langle u_j, v_t \rangle = \langle \hat{u}_i, v_t \rangle$$

$$\widehat{\theta}_{i,t,\text{time-NN}}^{(a)} = Y_{i,t'} \approx \langle u_i, v_{t'} \rangle = \langle u_i, \hat{v}_t \rangle$$

$$\widehat{\theta}_{i,t,\text{DR-NN}}^{(a)} = Y_{j,t} + Y_{i,t'} - Y_{j,t'}$$

 $\langle \hat{u}_i, v_t \rangle + \langle u_i, \hat{v}_t \rangle - \langle \hat{u}_i, \hat{v}_t \rangle$

	Estimate $\theta_{i,t}$	time-NN $Y_{i,t'}$	
	user-NN $Y_{j,t}$	$Y_{j,t'}$	

 $\mathbf{1}_{i,t,j,t'} = \mathbf{1}(\rho_{i,i}^{(a)} \le \eta, \ \rho_{t,t'}^{(a)} \le \eta, \ A_{j,t} = A_{i,t'} = A_{j,t'} = a)$

 $\widehat{\boldsymbol{\theta}}_{i,t,\text{DR-NN}}^{(a)} = \frac{1}{\sum_{j \neq i, t' \neq t} \mathbf{1}_{i,t,j,t'}} \sum_{j \neq i, t' \neq t} (Y_{j,t} + Y_{i,t'} - Y_{j,t'}) \cdot \mathbf{1}_{i,t,j,t'}$

 $\langle \hat{u}_i, v_t \rangle + \langle u_i, \hat{v}_t \rangle - \langle \hat{u}_i, \hat{v}_t \rangle$

Sample-split for doubly robust nearest neighbors

 $\mathbf{1}_{i,t,j,t'} = \mathbf{1}(\rho_{i,i}^{(a)} \le \eta, \ \rho_{t,t'}^{(a)} \le \eta, \ A_{j,t} = A_{i,t'} = A_{j,t'} = a)$

 $\widehat{\boldsymbol{\theta}}_{i,t,\text{DR-NN}}^{(a)} = \frac{1}{\sum_{j \neq i, t' \neq t} \mathbf{1}_{i,t,j,t'}} \sum_{j \neq i, t' \neq t} (Y_{j,t} + Y_{i,t'} - Y_{j,t'}) \cdot \mathbf{1}_{i,t,j,t'}$

*Nuisance estimates should be fitted independently of terms used for debiasing

			_		
/		Estimate $ heta_{i,t}$		time-NN $Y_{i,t'}$	
		user-NN $Y_{i.t}$		$Y_{j,t'}$	

Sample-split for doubly robust nearest neighbors

 $\mathbf{1}_{i,t,j,t'} = \mathbf{1}(\rho_{i,i}^{(a)} \le \eta, \ \rho_{t,t'}^{(a)} \le \eta, \ A_{j,t} = A_{i,t'} = A_{j,t'} = a)$

 $\widehat{\boldsymbol{\theta}}_{i,t,\text{DR-NN}}^{(a)} = \frac{1}{\sum_{j \neq i, t' \neq t} \mathbf{1}_{i,t,j,t'}} \sum_{j \neq i, t' \neq t} (Y_{j,t} + Y_{i,t'} - Y_{j,t'}) \cdot \mathbf{1}_{i,t,j,t'}$

*Nuisance estimates should be fitted independently of terms used for debiasing

			Estimate $ heta_{i,t}$		time-NN $Y_{i,t'}$	
Use	this da [.]	ta to				
est neig	imate u ghbors	ser of <i>i</i>	user-NN $Y_{j,t}$		$Y_{j,t'}$	
	Use est nei	Use this date of the stimate of the	Use this data to estimate user neighbors of <i>i</i>	$\begin{bmatrix} I \\ I $	$\begin{array}{c c} & & & \\ \hline \\ & & \\ \\ & \\ \\ & \\ \\ & \\ \\ & \\ \\ & \\ \\ & \\ \\ & \\ \\ & \\ \\ & \\ \\ & \\ \\ \\ & \\ \\ \\ & \\ \\ \\ & \\ \\ \\ & \\ \\ \\ & \\ \\ \\ \\ & \\$	$\begin{array}{ c c c c c } \hline & & & & & & & & & & & & & & & & & & $

Sample-split for doubly robust nearest neighbors

 $\mathbf{1}_{i,t,j,t'} = \mathbf{1}(\rho_{i,i}^{(a)} \le \eta, \ \rho_{t,t'}^{(a)} \le \eta, A_{j,t} = A_{i,t'} = A_{j,t'} = a)$

 $\widehat{\theta}_{i,t,\text{DR-NN}}^{(a)} =$ $\frac{1}{\sum_{j \neq i, t' \neq t} \mathbf{1}_{i,t,j,t'}} \sum_{\substack{j \neq i, t' \neq t}} (Y_{j,t} + Y_{i,t'} - Y_{j,t'}) \cdot \mathbf{1}_{i,t,j,t'}$

*Nuisance estimates should be fitted independently of terms used for debiasing

$$|\hat{\theta}_{i,t,\text{user-NN}}^{(a)} - \theta_{i,t}^{(a)}| = \tilde{O}\left(\frac{1}{T^{1/4}} + \frac{1}{\sqrt{N}}\right)$$
$$|\hat{\theta}_{i,t,\text{time-NN}}^{(a)} - \theta_{i,t}^{(a)}| = \tilde{O}\left(\frac{1}{N^{1/4}} + \frac{1}{\sqrt{T}}\right)$$

Doubly robust estimate fixes the <u>slow error rates</u>

$$\begin{aligned} | \hat{\theta}_{i,t,\text{user-NN}}^{(a)} - \theta_{i,t}^{(a)} | &= \tilde{O}\left(\frac{1}{T^{1/4}} + \frac{1}{\sqrt{N}}\right) \\ | \hat{\theta}_{i,t,\text{time-NN}}^{(a)} - \theta_{i,t}^{(a)} | &= \tilde{O}\left(\frac{1}{N^{1/4}} + \frac{1}{\sqrt{T}}\right) \\ \downarrow \\ | \hat{\theta}_{i,t,\text{DR-NN}}^{(a)} - \theta_{i,t}^{(a)} | &= \tilde{O}\left(\frac{1}{\sqrt{T}} + \frac{1}{\sqrt{N}}\right) \end{aligned}$$

[**Dwivedi**-Tian-Tomkins-Klasnja-Murphy-Shah '22b]

Doubly robust estimate fixes the <u>slow error rates</u>

$$\begin{aligned} | \hat{\theta}_{i,t,\text{user-NN}}^{(a)} - \theta_{i,t}^{(a)} | &= \tilde{O}\left(\frac{1}{T^{1/4}} + \frac{1}{\sqrt{N}}\right) \\ | \hat{\theta}_{i,t,\text{time-NN}}^{(a)} - \theta_{i,t}^{(a)} | &= \tilde{O}\left(\frac{1}{N^{1/4}} + \frac{1}{\sqrt{T}}\right) \\ \downarrow \\ | \hat{\theta}_{i,t,\text{DR-NN}}^{(a)} - \theta_{i,t}^{(a)} | &= \tilde{O}\left(\frac{1}{\sqrt{T}} + \frac{1}{\sqrt{N}}\right) \end{aligned}$$

[**Dwivedi**-Tian-Tomkins-Klasnja-Murphy-Shah '22b]

USVT: A baseline algorithm from [Chatterjee 2014]

Simulation results

Uniform factors on $[-0.5, 0.5]^4$, Gaussian noise, pooled ε -greedy policy ($\varepsilon = 0.5$)

Simulation results

Uniform factors on $[-0.5, 0.5]^4$, Gaussian noise, pooled ε -greedy policy ($\varepsilon = 0.5$)

DR-NN error \ll **min** { user-NN error, time-NN error }

Simulation results

Uniform factors on $[-0.5, 0.5]^4$, Gaussian noise, pooled ε -greedy policy ($\varepsilon = 0.5$)

from [Chatterjee 2014]

HeartSteps study results 娇子 (□) 休_---

Treatments assigned with Thompson sampling independently for 91 users for 90 days, 5 times a day

HeartSteps study results 娇子《 [》大 _---

Treatments assigned with Thompson sampling independently for 91 users for 90 days, 5 times a day

DR-NN error \approx **min** { user-NN error, time-NN error }

Treatments assigned with Thompson sampling independently for 91 users for 90 days, 5 times a day

HeartSteps study results 娇才《 [》 术____

DR-NN error \approx **min** { user-NN error, time-NN error }

DR-NN: Robust to heterogeneity in user & time factors

41

DR-NN: Robust to heterogeneity in user & time factors

DR-NN error \approx user-NN error \times time-NN error \lesssim min{user-NN error, time-NN error}

As long as, either user factors or time factors exhibit similarities, DR-NN has a good error

41

Summary: Integrating Double Robustness into Causal Latent Factor Models

Summary: Integrating Double Robustness into Causal Latent Factor Models

 $\hat{u}\hat{v}$ Estimate $\hat{u}v + u\hat{v} - \hat{u}\hat{v}$

	Problem setting	U	V
	ATE with observed confounding	conditional outcome mean	propensity function
	Off policy evaluation	mean reward	importance ratio
This	ATE with Matrix Completion (Unobserved confounding)	outcome matrix	propensity matrix
talk	ITE with Nearest Neighbors (Unobserved confounding)	user factor	time factor

$$O(|\hat{u} - u| + |\hat{v} - v|)$$

Error
$$\oint O(|\hat{u} - u| \times |\hat{v} - v|)$$

Thank you! <u>raazdwivedi.github.io</u>

Appendix

A popular approach for ITE: Nearest neighbors

- + Easy to implement and interpretable for checking
- + Entry-wise guarantees
- + Robust to interventional patterns
 - missing completely at random (MCAR) [Li et al. 2019]
 - sequential randomization (MAR) [Dwivedi et al. 2022a]
 - unmeasured confounding (MNAR) [ongoing work]

Prior work/other methods

Rich literature

Not so rich literature

entry-wise guarantees essentially assuming \rightarrow

Simulation results with growing ranks

Uniform factors with rank($\Theta^{(a)}$) = $N^{1/4}$, Rank(P) = $N^{1/5}$

Errors for fixed *t* across trials

Bias-variance tradeoff for the nearest neighbors with η

We prove a general error bound for user NN (with actions sampled by learning policies)

 $(\hat{\theta}_{i,t,\eta}^{(a)} - \theta_{i,t}^{(a)})^2 \preceq \frac{1}{\lambda_{\perp}^2} \left(\eta - 2\sigma^2 + \frac{C}{\sqrt{p^2 T}} \right) + \frac{\sigma^2}{p N_{i,\eta' - e_T}} + c_{noise} \left[\frac{N_{i,\eta' + e_T} - N_{i,\eta' - e_T}}{p N_{i,\eta' - e_T}} \right]^2$

NN bias due to threshold

η

Error in NN distance

 $\lambda_{\star} \triangleq \lambda_{\min}(\Sigma_{v})$ where $\Sigma_{v} = \mathbb{E}[v_{t'}v_{t'}^{\dagger}]$

 $N_{i,\gamma} \triangleq |\{j \neq i : (u_i - u_j)^\top \Sigma_{\nu} (u_i - u_j) \leq \gamma\}|$

$$\left(\frac{C}{p^2T}\right)$$

 e_T

NN noise variance

NN bias inflation due to **learning** policy

Asymptotic intervals

suitable regularity conditions:

• 95% intervals with asymptotic **coverage** as $N, T \rightarrow \infty$ and $\eta \rightarrow 2\sigma^2$ with

Non-linear double/squared robustness

- $f(u,0) = f(0,0) + f'_u(0,0)u +$
- f(0,v) = f(0,0) + f(0,0) +
- $f(u, v) = f(0,0) + f'_u(0,0)u + f'_v(0,0)$

$$+f''_{uu}(\tilde{u},0)u^2$$

 $+f'_{\nu}(0,0)\nu + f''_{\nu\nu}(0,\hat{\nu})\nu^2$

$$v + [u, v] \nabla^2 f(\tilde{u}, \tilde{v}) \begin{bmatrix} u \\ v \end{bmatrix}$$

• $f(u,0) + f(0,v) - f(u,v) = f(0,0) + O((u+v)^2) \Longrightarrow \text{Error} = \max\{u^2, v^2\}$

