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Talk outline

1. Causal Latent Factor Models: Data-rich enviroments 

2. Double Robustness: A Layman’s Perspective 

3. Integrating: Two Vignettes
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1. Causal Latent Factor Models: 
Inference for modern data-rich settings

3



Decision-making in data-rich environments

4



Decision-making in data-rich environments

4

Data:  units with  measurements under (finitely) many interventionsN T



Decision-making in data-rich environments

4

Data:  units with  measurements under (finitely) many interventionsN T

Precision medicineOnline platforms Digital health



Decision-making in data-rich environments

4

Data:  units with  measurements under (finitely) many interventionsN T
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 always admits 
rank  factorization. 

The real assumption is that the rank is 
.

Θ(a) ≜ [θ(a)
i,t ]i∈[N],t∈[T]

N ∧ T

≪ N ∧ T
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How do we do augmented IPW / doubly robust 
adjustment with unobserved confounding?
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When the estimand is a product

Similar structure across problems:

• For ATE with observed confounding:  𝔼[Y(1)] = 𝔼[𝔼[Y(1) |X] ⋅ A
p(X) ]

• Importance sampling:   

(e.g., off-policy evaluation, covariate shift, …)

𝔼X∼ℚ[Y] = 𝔼ℙ[𝔼[Y |X] ⋅ q(X)
p(X) ]
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θ⋆ = ⟨u, v⟩
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Double robustness, debiased/double 
machine learning… 

[… Cassel+ ’77, Robinson ’88, Särndal+ ’89, Robins+ ’94, ’95, 
’08, ’09, Newey+ ’94, ’18, Bickel+ ’98,  van der Laan+ ’03, 

Lunceford+ ’04, Davidian+ ’05, Li+ ’11, Jiang+ ’15,  
Chernozhukov+ ’18, Hirshberg+ ’18, Diaz ’19, Arkhangelsky+ 

’21, Dorn+ ’21 …]
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̂uv + u ̂v − ̂u ̂v

̂u ̂v O( | ̂u − u | + | ̂v − v | )

O( | ̂u − u | × | ̂v − v | )
ErrorEstimate

Problem setting

ATE with observed confounding conditional outcome mean propensity function

Off policy evaluation mean reward importance ratio

[This talk] ATE with unobserved confounding outcome matrix propensity matrix

[This talk] ITE with unobserved confounding user factor time factor

u v

Simplified view of doubly robust estimator for uv
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3. Integrating double robustness with 
causal latent factor model 

Part 1: Doubly robust estimation of ATE   t = 1
N

N

∑
i=1

(θ(1)
i,t − θ(0)

i,t )

Part 2: Doubly robust estimation of ITE   i,t = θ(1)
i,t − θ(0)

i,t

̂uv + u ̂v − ̂u ̂v̂u ̂v
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Doubly robust estimation of ATE   = t
1
N

N

∑
i=1

(θ(1)
i,t − θ(0)

i,t )

(CATE for unobserved confounding)

Anish AgarwalAlberto Abadie Abhin Shah

https://arxiv.org/abs/2402.11652 

https://arxiv.org/abs/2402.11652
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p p p p

p p p p

p p p p

p p p p

pi,t = p

p1 p1 p1 p1

p2 p2 p2 p2

p3 p3 p3 p3

p4 p4 p4 p4

 or pi,t = pi pt

p11 p12 p13 p14

p21 p22 p23 p24

p31 p32 p33 p34

p41 p42 p43 p44

p  = u f(X ) i,t i
⊤

j

smooth f
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So..can we design estimators that are robust to either 
outcome matrix or propensity matrix being low rank?
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Black-box Matrix 
EstimationA ̂P

Θ̂(1)Black-box Matrix 
CompletionY ∘ A

Θ̂(0)Black-box Matrix 
CompletionY ∘ (1 − A)

So..can we design estimators that are robust to either 
outcome matrix or propensity matrix being low rank?
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Need to identify the terms from the observed data…
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Use only these three matrix 
blocks to estimate/complete  

Θ̂(1)
𝒮 , Θ̂(0)

𝒮 , ̂p𝒮 ⊥⊥ A𝒮

̂p𝒮 ⊥⊥ Y(1)
𝒮 , Y(0)

𝒮

block 𝒮

Via Cross-Fitted Matrix Completion
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Typical matrix-completion rates: 

  
poly(rank)

N ∧ T
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Doubly robust to the rank of outcome 
& propensity matrices

Error guarantees for DR estimate for ATEt

Generic matrix completion 
- No asymptotic normality  
- Slow error rates with large ranks
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In this talk, henceforth assume pi,t ≡ p



Part 2:  
Doubly robust nearest neighbors for 

estimating ITE
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Katherine Tian Sabina Tomkins Susan MurphyPredrag Klasnja Devavrat Shah

https://arxiv.org/abs/2211.14297
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Treatment  Treatment 

Estimate 
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θ(a)
i,t

 + noiseYi,t = θ (Ai,t)
i,t i,t
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=Aj,t′ 
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̂θ (a)
i,t,user−NN =

∑N
j=1 Yj,t 1(ρ(a)

i,j ≤η, Aj,t =a)

∑N
j=1 1(ρ(a)

i,j ≤η, Aj,t =a)

1. Compute distance b/w users  and i j

2. Average neighbor outcomes at time t

3. Do this procedure for  and .a = 0 1
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overlap   (   for )= ∑
t′ ≠t

1(Ai,t′ 
=Aj,t′ 

=a) ≈ p2T pi,t ≡ p

| ̂θ (a)
i,t,user−NN − θ(a)

i,t | + 1
p ⋅ #Row Neighbors within η

Row factor 
distribution

uniform over a finite set 
of size M

Uniform in [−1,1]d

1
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1
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T1/4 + 1

N )

34

 | ̂θ (a)
i,t,time−NN − θ(a)

i,t | = Õ ( 1
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USVT: A baseline algorithm from [Chatterjee 2014]
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Let   be such that   &   
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Estimate time-NN 
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̂θ (a)
i,t,DR−NN =
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j≠i,t′ ≠t

(Yj,t+ Yi,t′ 
− Yj,t′ 

) ⋅1i,t,j,t′ 

Yj,t′ 
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Doubly robust estimate fixes the slow error rates
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 | ̂θ (a)
i,t,time−NN − θ(a)

i,t | = Õ ( 1
N1/4 + 1

T )

Uniform factors on , Gaussian noise, 
pooled -greedy policy ( )

[−0.5,0.5]4

ε ε = 0.5

Simulation results with N=T
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(N = T = 128, 1 Trial )

A baseline algorithm  
from [Chatterjee 2014]

Uniform factors on , Gaussian noise, 
pooled -greedy policy ( )

[−0.5,0.5]4

ε ε = 0.5

DR-NN error  min { user-NN error, time-NN error }≪



HeartSteps study results
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DR-NN: Robust to heterogeneity in user & time factors
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DR-NN error    user-NN error  time-NN error 
                            min{user-NN error,  time-NN error}

≈ ×
≾

As long as, either user factors or time factors 
exhibit similarities, DR-NN has a good error



Summary: Integrating Double Robustness into Causal 
Latent Factor Models
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̂uv + u ̂v − ̂u ̂v

̂u ̂v O( | ̂u − u | + | ̂v − v | )

O( | ̂u − u | × | ̂v − v | )
ErrorEstimate

Problem setting

ATE with observed confounding conditional outcome mean propensity function

Off policy evaluation mean reward importance ratio

ATE with Matrix Completion (Unobserved confounding) outcome matrix propensity matrix

ITE with Nearest Neighbors (Unobserved confounding) user factor time factor

u v

This 
talk

Thank you!
raazdwivedi.github.io 

http://raazdwivedi.github.io
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A popular approach for ITE: Nearest neighbors

 Easy to implement and interpretable for checking+

 Entry-wise guarantees+

 Robust to interventional patterns+

• missing completely at random (MCAR)  
[Li et al. 2019] 

• sequential randomization (MAR)  
[Dwivedi et al. 2022a]

• unmeasured confounding (MNAR) 
[ongoing work]
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Prior 
work/other 
methods

Rich literature

Not so rich literature

Intervention matrix

entry-wise guarantees 
essentially assuming →



47

OI IPW DR
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Bias-variance tradeoff for the nearest neighbors with η
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MSE for estimates 
on observed entries
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We prove a general error bound for user NN (with 
actions sampled by learning policies)
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         +          +        +   ( ̂θ (a)
i,t,η−θ(a)

i,t )2 ≾ 1
λ2⋆ (η − 2σ2 C

p2T ) σ2

pNi,η′ −eT

cnoise[ Ni,η′ +eT
− Ni,η′ −eT

pNi,η′ −eT
]2

NN bias 
due to threshold

Error in 
NN distance

NN noise 
variance

’η eT

Ni,γ ≜ |{j ≠ i : (ui − uj)⊤Σv(ui − uj) ≤ γ} |

NN bias 
inflation due to  
learning policy

where Σv = 𝔼[vt′ 
v⊤

t′ 
]λ⋆ ≜ λmin(Σv)



• 95% intervals with asymptotic coverage as  and  with 
suitable regularity conditions: 
 

                  

N, T → ∞ η → 2σ2

̂θ (a)
i,t,user−NN ± 1.96 ̂σ

#neighborsi,t,a

Asymptotic intervals
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Non-linear double/squared robustness

•  

•  

•  

•   Error  

f(u,0) = f(0,0) + f′ u(0,0)u+ +f′ ′ uu(ũ,0)u2

f(0,v) = f(0,0) + +f′ v(0,0)v + f′ ′ vv(0, ̂v)v2

f(u, v) = f(0,0) + f′ u(0,0)u + f′ v(0,0)v + [u, v]∇2f(ũ, ṽ)[u
v]

f(u,0) + f(0,v) − f(u, v) = f(0,0) + O((u + v)2) ⟹ = max{u2, v2}
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