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Sequential decision making problems

 Online education: Enhance teaching strategies for better learning
e Online advertising: Update ads / placements to increase revenue

e Mobile health: Personalized app notifications to promote healthy behavior
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Mobile health trial: A simplified but representative set-up

Yl.(?) = potential outcome of user i at under treatmenta € {0,1}

- Neyman-Rubin potential outcome framework
- No spill-over of treatment on future outcomes



Mobile health trial: A simplified but representative set-up

Fortimet=1,2,....T

Foruseri=1,....N

] B’ (notity) with prob. x, .
1. Assign A, « . . |
| 0 (do nothing) with prob. 1 — z;

2. Observe Z . = Y 4 E;
’ 1,1 ’

Update policy to 7, ; € [0,1]" using history,

4



Setting overview

This talk: Sequential experiments

Observed data of o .
all N users till £—1 oficy 1, olicy 7, |

Unobserved Observed data of
variables all N users at ¢

[Yom-Tov 17, Tomkins et al. '20]



Setting overview

This talk: Sequential experiments

Observed data of o .
all N users till £—1 oficy 1, olicy 7, |

Observed data of| RGEl ALl

Unobserved

variables personalization

all N users at ¢

In-study pooling

for fast learning

[Yom-Tov 17, Tomkins et al. '20]



Setting overview

This talk: Sequential experiments Prior work

Observed data of o .
all N users till £—1 oficy 1, olicy 7, |

Unobserved Observed data of
variables all N users at ¢

Dynamic treatment regime
¢ i.i.d. trajectories across users

® e.g., personalized clinical treatment
[Robins ‘86, Murphy ‘03, Bojinov et al. '21]

[Yom-Tov 17, Tomkins et al. '20]



Setting overview

This talk: Sequential experiments Prior work

Observed data of o .
all N users till 1—1 oficy 7 olicy |
Policy evaluation for bandits

Observed data of e i.i.d. users at each time

Unobserved

. ® c.g, online ads
variables all N users at ¢ S

[Zhang et al. 21, Hadad et al. 21, Bibaut et al. '21]

[Yom-Tov 17, Tomkins et al. '20]



Setting overview

This talk: Sequential experiments Prior work

Observed data of o .
all N users till £—1 oficy 1, olicy 7, |

Unobserved Observed data of
variables all N users at ¢

Causal panel data (observational studies)

e users treated forever after 7,

* c.g, law enforcement in california
[Abadie et al. ‘03, Chernozhukov et al. ‘17, Athey et al. '18, Agarwal et al. '21]

[Yom-Tov 17, Tomkins et al. '20]



Goals overview

Dynamic treatment regime

Average treatment effect (ATE)

Policy evaluation for bandits

Oft-policy evaluation (OPE)

Causal panel data

Average treatment effect (ATE)
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Goals overview

Counterfactual inference in
sequential experiments

user X time-level treatment effect

-allows generic after-study analyses
including ATE, OPE
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Dynamic treatment regime

Average treatment effect (ATE)

Policy evaluation for bandits

Oft-policy evaluation (OPE)

Causal panel data

Average treatment effect (ATE)




With stronger goals come
stronger assumptions!

Equivalently, stronger responsibilities require stronger assumptions!

Or, great responsibilities requires great power!
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Model: Latent factorization

Y* Y(l) _f(ula Vt)

u. : latent factor for user i
v, . latent factor for time 1

f . unknown (non) linear function

N user latent factors
(e.g., personal traits)

T time latent factors (e.g., societal, weather changes
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Model: Latent factorization

V2 YD 2 f, v

u. : latent factor for user i
v, . latent factor for time 1

f . unknown (non) linear function

N user latent factors
(e.g., personal traits)

T time latent factors (e.g., societal, weather changes
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Model: Latent factorization

V2 YD 2 f, v

u. : latent factor for user i
v, . latent factor for time 1

f . unknown (non) linear function

N user latent factors
(e.g., personal traits)

/

o

T time latent factors (e.g., societal, weather changes)

\
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‘

Correlated outcomes
across users and time



Model: Latent factorization
*x A 1) A
Yi,t B Yl(,l‘) _f(uia Vt)

u. : latent factor for user i
v, . latent factor for time 1

f . unknown (non) linear function

N user latent factors
(e.g., personal traits)

T time latent factors (e.g., societal, weather changes)




Model: Latent factorization

A 1) A
VL =Y, = fuv)

u. : latent factor for user i
v, . latent factor for time 1

f . unknown (non) linear function

N user latent factors
(e.g., personal traits)

T time latent factors (e.g., societal, weather changes)

Examples include:

® Y ~ Gaussian process with

covariance kernel k

u; = Gaussian vector

= Eigenfunctions of k

f(u V) = (U, )

® Sub-class of exchangeable data
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T time latent factors (e.g., societal, weather changes

Model: Latent factorization
*x A 1) A
YL2Y) = fu,v,)

u. : latent factor for user i
v, . latent factor for time 1

f . unknown (non) linear function

Essentially a low-rank factorization
N user latent factors
(e.g., personal traits) assumptlon—can check via smgular

value decomposition!
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Algorithm:
Reduce counterfactual inference to sequential matrix completion

o Fix treatmentsay 1, with ¥* = Yl.(i)

e N X T matrix of potential outcomes with missing at random entries

Z: = | A where A; . = Bernoulli(r, ;)
’ unknown it A, =0 ’ ’

e New goal: Estimate missing entries Y (separately for each treatment)

19



Algorithm: A variant of nearest neighbors

T time

Missing

users

20 Counterfactual inference (Raaz Dwivedi)



Estimating Y* via a variant of nearest neighbors

T time
Observed
Missing

N Estimate

, Yy

USEers | Available users: ’
QOutcome Available

observed at

time ¢ Available

Available
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Estimating Y via a variant of nearest neighbors

T time

N

USers | Available users:

Outcome
observed at

Estimate
*
Y it

Available

Available

Available

PAL, ) =
Averaged squaread

distance between

over t' % t such

that Ai,f/Aj,f/ — 1

time ¢
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Non-parametric estimate: Agnostic to policy and model!

T time

/Y\i,t = Average(Y; ) over available users j with p(i,7) < 7] for suitable

threshold #
Estimate
Y2

Available

Available

Available

N

users | Available users:

Outcome
observed at

pt(laj) —
Averaged squaread

distance between

over t’ # t such

that Ai,f/Aj,t’ — 1

time ¢
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Next: Theoretical guarantees

1. Sequential CLT for non-linear latent tactor model
2. Anytime consistency for bilinear latent factor model
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Lipschitz f

Consider a non-linear Lipschitz f, and suppose

e iid unit factors {u;}, time factors {v,} on bounded domain

e iid bounded noise {Sjt} with mean 0, variance ¢?

e sequential policies ,i.e., m. depends on all users’ history till  — 1;
treatments{A;,} assigned independently given the history

25



Lipschitz f: Central limit theorem for sequential estimation of Y7,

Consider a non-linear Lipschitz f, and suppose

e iid unit factors {u;}, time factors {v,} on bounded domain

e iid bounded noise {8jt} with mean 0, variance ¢

e sequential policies ,i.e., m, depends on all users’ history till  — 1;
treatments{A,,} assigned independently given the history

Under regularity conditions with a suitable scaling of #, for any fixed user i at last
time T with

A/ (i’\i,T— Yi’fT) — /(0,06%°) as N,T — oo together at suitable rates
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Lipschitz f: Non-asymptotic expected squared error bound

D2(1 T Vi T) o2

(P v ] 3 -2 ¢ — 2 s T
pmm T Pmin T(I) N

Bias due Concentration of Effective noise
to 7 neighbor distance variance
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Lipschitz f: Non-asymptotic expected squared error bound

D2(1 +7 ) ‘

A 1,1 O
| For= Yl lu| 3 =200 + ——= ¢ ———
o O.N

prmn T Pmin,T
Bias due Concentration of Effective noise

to 7 neighbor distance variance
= bound on observation
Pmin, 7 = min ﬂt(]) min probability of sampling any entry

t,J
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Lipschitz f: Non-asymptotic expected squared error bound

VN

- [(Y

1,1

Y*T)z\u] (n—262) +

pmln T

D2(1 T Vi T) o2

_|_ ————————————————————
Pmin T(I) N

Bias due Concentration of Effective noise
to 7 neighbor distance variance
= bound on observation

Pmin I — = min ﬂt(] )

@, = [, v) = fu,v)*] < /2 = o?)

l

t,J

P,

29

min probability of sampling any entry

Probability of sampling a nearest neighbor



Lipschitz f: Non-asymptotic expected squared error bound

2
= Y=Y | 3 (- 20)+— L —
pmm T Pmin,T % N
Bias due Concentration of Effective noise
to 7 neighbor distance variance
= bound on observation
Pmin, 7 = min ﬂt(]) min probability of sampling any entry

,]
b. = P ( V[f(ul-, V) — f(u, V)z] <nl2 — 02) Probability of sampling a nearest neighbor

l

Yir = Sup = D, LA A | history | — = P LA A | history ]
jAit<T

Cumulative future dependency of adaptive policies on one column
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Regularity conditions needed for the CLT

~ D*(1 +y;7) c*
A [P P L 7 N
’ ’ . O.N
pr%lin T\/T— | pmln,T l
"Bias” terms go to zero after multiplying by The denominator (min
number of neighbors N, r: number of nearest
- — 26° goes to zero fast enough neighbors) goes to oo

- N; 7 can not grow faster than pﬁlin,Tﬁ
(cap number of nearest neighbors)
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fu,v) = (u,v)

Assuming bounded observations ana

* iid latent unit {1, jand time factors {v,} with positive definite

covariance V* on bounded domain

e iid bounded noise {ejt} with mean 0, variance ¢*

e adaptive policies that introduce “weak correlations”

32



flu,v) = (u,v): A consistency result for any time ¢

Assuming bounded observations ana

* iid latent unit {1, jand time factors {v,} with positive definite

covariance V* on bounded domain

e iid bounded noise {ejt} with mean 0, variance ¢*

e adaptive policies that introduce “weak correlations”

then with suitable scaling of (y, N, T)
?i,t — Y* in probability for any fixed (i, 1).

1,1
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Proot sketch: Advantage of bilinearity

Under the regularity conditions

weak correlations T
. }St¢ i A ViVy
(u; — u;)

pi.J) <1 — (u; — u;) SN —co”
}St#t Jf

34



Proot sketch: Advantage of bilinearity

Under the regularity conditions

‘ T
N weak correlations ; Zt’;ét Aj,l" Ai,t’vt’vt’
pliJ) <1 — (u; — u;)
zf’#t Aj,f/Ai,t/

pos. def. covariance + weak correlations N — C62

— lu; — uwll, 5\ P

Cauchy-Schwarz n — 602
— [ Y=Y S HWHz‘\

2

(u; —u;) Sn—co

where A = 4_. (V*)

min

35



Summary:
Counterfactual inference in sequential experiments

Observed data of o -
all N users till 7—1 ONCY 7 ONCY 1
Unobserved Observed data of
variables all NV users at ¢

https://rzrsk.github.io

36


https://rzrsk.github.io

Summary:
Counterfactual inference in sequential experiments

https://rzrsk.github.io

(For each treatment separately)

{Yi’ft t+eg, it A, =1 Nearest neighbor

Observed data of

. Policy Policv 7
all N users till —1 Y 7 Y Ty

measuring distance
Latent factor model: over time

YZ; — f(uia Vt)

Observed data of

Unobserved

all N users at ¢

variables

37
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Summary:
Counterfactual inference in sequential experiments

https://rzrsk.github.io

(For each treatment separately)

{Yi’ft t+eg, it A, =1 Nearest neighbor

Observed data of

. Policy Policv 7
all N users till —1 Y 7 Y Ty

measuring distance
Latent factor model: over time

YZ; — f(uia Vt)

Observed data of

Unobserved

all N users at ¢

variables

Any-time consistency Lipschitz non- Sequential CLT

oo _> A _> N\
Bilinear f Y, — Yl?; linear f Nir (Y= Y;T)i'/’/(()’gz)
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Coming this tall...

e Confidence intervals for average treatment effects
e An improved “doubly-robust’’ variant of nearest neighbors
e Several future directions:

® Use of covariates/contexts

® Temporal structure (dynamical system)

® | everaging information across treatments

39



(For each treatment separately)

Observed data of

. Policy Policv 7
all N users till —1 Y 7 Y Ty

measuring distance
Latent factor model: over time

YZ; — f(uia Vt)

Observed data of

Unobserved

all N users at ¢

variables

Any-time consistency Lipschitz non- Sequential CLT

Bilinear — S — >
/ Yi,t —> Yi’; linear f Ni,T(Yi,T_ Y;T)i,/l/((),az)

40
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Additional slides



Explicit non-asymptotic bound
for the bilinear case



flu,v) = (u,v): A deterministic error bound for any (i, )

e T,;;= commonly observed time points between i and j other than ¢

(used to compute distance p (i, )))
* N;;= nearest neighbors for (i, t)

e Deterministic error bound:
2

~ v H2 noise, {v,} ZjeNit NOISe;
(Yi,t—Y.*2< AL ;7—(:02+< }) + ’

,l‘ % .
l A miney. 73 ; | Nl
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Gaussian process as a bilinear
latent tactor model



time latent factors
Latent factor model

Vi & Y S S v) @ @ . @

u. : latent factor for user i

v, : latent factor for time 7 . Yl* ~ (Gaussian process with mean m

J : unknown (non) linear function in the reproducing kernel Hilbert

space of the covariance kernel Kk,
user

latent which has eigenfunctions ¢, then
factors

flu,v) = (u,v),

u; = ((m, ¢;))i_y + H(0,1,), ano

V, = (¢j(xz));=1-

45



Gaussian process as a latent factor model

e |f each user’s data is a sample from £9(0,k) where K is Mercer’s kernel such
that

K(t;.1,) = ) App (1)) (1y),
=1

where 4,, ¢, denote eigenvalue-eigentunctions with {¢,} orthonormal

e Thentor{; , ~.;; #(0,1), we have

Y = Z Ci. e\ Ar @) almost surely = Y, = f(u;, v,) = (u;, v,)
£=1

for u; = (aj,ay,...) + (&1, &i0s -.) and v, = (\/4,01(0,1/1ay(D), ...)
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Example: Exchangeable data

 The latent factor model also holds if the matrix
*

Y, te

.e., exchangeable under row and column permutations

i»i=1....N,t=1,...,T} tor a sub-class of exchangeable data

e See Secll.CLietal.2017
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Mathematical description of
nearest neighbors



Nearest neighbors estimate for Y

e Input: Partially observed matrix; Output: Estimate of noiseless entry (i, 1)

e Algorithm: Compute
® Available neighborsattimer={j:A;, =1}

® Good neighbors foruseriattimetr=1{j: p(i,j) £ n} where

1
Z (Zi,t’ o Zj,t’)zAi,t’Aj,t’
Ai,f’Aj,t’ {41

,Ut(l,]) —
Zt’;ét
° ?-t = Simple average of Y;, over {j:A;,=1andp(ij) <n}.

L,
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Further details about prior work



Data collected with a tixed policy: Off policy evaluation

e Set-up considers either
® j.i.d.users, e.g., multi-armed bandits
® or, one user over time, e.g., Markov decision proces
® but not multiple users over multiple time

e Quantities of interest: Average reward under alternative policy,
estimated using IPW-based estimates, switch estimators etc.

[ ..., Lietal 2015, Wang et al. 2021, Ma et al. 2021,... ]
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Diverse mobile health applications
Smoking addiction Well-being Wearable/trackers
Wearable ION Glasses
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