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Counterfactual inference (Raaz Dwivedi)

Sequential decision making problems
• Online education: Enhance teaching strategies for better learning


• Online advertising: Update ads / placements to increase revenue


• Mobile health: Personalized app notifications to promote healthy behavior 

Physical activity  Wearable/trackers

Image credits: Susan Murphy
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Counterfactual inference (Raaz Dwivedi)

 = potential outcome of user  at time  under treatment  


For time 

For user 


1. Assign   


2. Observe    (step count)


Update policy to  using history

Y(a)
i,t i t a ∈ {0,1}

t = 1,2,...,T
i = 1,...,N

Ai,t ← {
1 (notify) with prob. πt,i

0 (do nothing) with prob. 1 − πt,i

Zi,t = Y (Ai,t)
i,t + εi,t

πt+1 ∈ [0,1]N
t

Mobile health trial: A simplified but representative set-up

- Neyman-Rubin potential outcome framework 

- No spill-over of treatment on future outcomes

Image credits: apps.garmin.com
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Counterfactual inference (Raaz Dwivedi)

[Yom-Tov ’17, Tomkins et al. ’20]

Setting overview

Policy πt+1Policy πt
Observed data of 
all  users till N t−1

Observed data of 
all  users at N t

Unobserved 
variables

This talk: Sequential experiments
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[Yom-Tov ’17, Tomkins et al. ’20]

Setting overview

Policy πt+1Policy πt
Observed data of 
all  users till N t−1

Observed data of 
all  users at N t

Unobserved 
variables

Adaptivity for 
personalization

In-study pooling 
for fast learning

Dynamic treatment regime

• i.i.d. trajectories across users

• e.g., personalized clinical treatment  

[Robins ’86, Murphy ’03, Bojinov et al. ’21]

Policy evaluation for bandits


• i.i.d. users at each time

• e.g, online ads 

[Zhang et al. ’21, Hadad et al. ’21, Bibaut et al. ’21]


Causal panel data (observational studies)

• users treated forever after  

• e.g, law enforcement in california  

[Abadie et al. ’03, Chernozhukov et al. ‘17, Athey et al. ’18, Agarwal et al. ’21]

t0

Prior workThis talk: Sequential experiments
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Dynamic treatment regime

• i.i.d. trajectories across users

• e.g., personalized clinical treatment  

[Robins ’86, Murphy ’03, Bojinov et al. ’21]

Policy evaluation for bandits


• i.i.d. users at each time

• e.g, online ads 

[Zhang et al. ’21, Hadad et al. ’21, Bibaut et al. ’21]


Causal panel data

• users treated forever after  

• e.g, law enforcement in california  

[Abadie et al. ’03, Chernozhukov et al. ‘17, Athey et al. ’18, Agarwal 
et al. ’21]

t0

Prior work

Goals overview

Average treatment effect (ATE)

Off-policy evaluation (OPE)

Average treatment effect (ATE)
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Dynamic treatment regime

• i.i.d. trajectories across users

• e.g., personalized clinical treatment  

[Robins ’86, Murphy ’03, Bojinov et al. ’21]

Policy evaluation for bandits


• i.i.d. users at each time

• e.g, online ads 

[Zhang et al. ’21, Hadad et al. ’21, Bibaut et al. ’21]


Causal panel data

• users treated forever after  

• e.g, law enforcement in california  

[Abadie et al. ’03, Chernozhukov et al. ‘17, Athey et al. ’18, Agarwal 
et al. ’21]

t0

Prior work

Goals overview
This talk:  

Counterfactual inference in  
sequential experiments

user x time-level treatment effect

-allows generic after-study analyses 

including ATE, OPE

Average treatment effect (ATE)

Off-policy evaluation (OPE)

Average treatment effect (ATE)
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With stronger goals come 
stronger assumptions!

Equivalently, stronger responsibilities require stronger assumptions! 
 

Or, great responsibilities requires great power!
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Model: Latent factorization 
Y⋆

i,t ≜ Y(1)
i,t ≜ f(ui, vt)

u1

u2

v1

uN

N user latent factors 
(e.g., personal traits)

T time latent factors (e.g., societal, weather changes)

v2 vT
 latent factor for user 

 latent factor for time 


  unknown (non) linear function

ui : i
vt : t
f :

13
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 latent factor for user 

 latent factor for time 


  unknown (non) linear function

ui : i
vt : t
f : u1

u2

v1

Y⋆
1,1

Y⋆
2,1

uN Y⋆
N,1

v2 vT
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i,t ≜ Y(1)
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v2

Y⋆
1,2u1

u2

v1

Y⋆
1,1

Y⋆
2,1

uN Y⋆
N,1

vT

Y⋆
1,T

 latent factor for user 

 latent factor for time 


  unknown (non) linear function

ui : i
vt : t
f :

Correlated outcomes 
across users and time

N user latent factors 
(e.g., personal traits)

T time latent factors (e.g., societal, weather changes)Model: Latent factorization 
Y⋆

i,t ≜ Y(1)
i,t ≜ f(ui, vt)
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v2

Y⋆
1,2

Y⋆
2,2

Y⋆
N,2

u1

u2

v1

Y⋆
1,1

Y⋆
2,1

uN Y⋆
N,1

vT

Y⋆
1,T

Y⋆
2,T

Y⋆
N,T

 latent factor for user 

 latent factor for time 
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vt : t
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v2

u1

u2

v1

uN

vt
 latent factor for user 

 latent factor for time 


  unknown (non) linear function

ui : i
vt : t
f :

Examples include:


• Gaussian process with 
covariance kernel  
 

Gaussian vector 
Eigenfunctions of  




• Sub-class of exchangeable data

Y⋆
i,⋅ ∼

k

ui =
vt = k
f(u, v) = ⟨u, v⟩

N user latent factors 
(e.g., personal traits)

T time latent factors (e.g., societal, weather changes)Model: Latent factorization 
Y⋆

i,t ≜ Y(1)
i,t ≜ f(ui, vt)
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v2

u1

u2

v1

uN

vt
 latent factor for user 

 latent factor for time 


  unknown (non) linear function

ui : i
vt : t
f :

Essentially a low-rank factorization 
assumption—can check via singular 

value decomposition!

N user latent factors 
(e.g., personal traits)

T time latent factors (e.g., societal, weather changes)Model: Latent factorization 
Y⋆

i,t ≜ Y(1)
i,t ≜ f(ui, vt)
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• Fix treatment say 1, with 


•  matrix of potential outcomes with missing at random entries 
 

         where 


• New goal: Estimate missing entries  (separately for each treatment) 
policy can depend on observed outcomes of all treatments

Y⋆
i,t ≜ Y(1)

i,t

N × T

Zi,t = {
Y⋆

i,t + εi,t if Ai,t = 1
unknown if Ai,t = 0

Ai,t = Bernoulli(πt,i)

Y⋆
i,t

Algorithm:

Reduce counterfactual inference to sequential matrix completion

19
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Algorithm: A variant of nearest neighbors

Observed

Missing

N

users

T time

20
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Observed

Missing

Estimate 

Available

Available

Available

Y⋆
i,t

Estimating  via a variant of nearest neighborsY⋆
i,t

Available users: 
Outcome 

observed at 
time t

N

users

T time

21
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Observed

Missing

Estimate 

Available

Available

Available

Y⋆
i,t

Estimating  via a variant of nearest neighborsY⋆
i,t

Available users: 
Outcome 

observed at 
time t

N

users

T time

 = 
Averaged squared 
distance between 

over  such 
that 

ρt(i, j)

t′￼ ≠ t
Ai,t′￼

Aj,t′￼
= 1

22
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Observed

Missing

Estimate 

Available

Available

Available

Y⋆
i,t

  Average( ) over available users  with ̂Yi,t = Yj,t j ρt(i, j) ≤ η for suitable 
threshold η

Available users: 
Outcome 

observed at 
time t

 = 
Averaged squared 
distance between 

over  such 
that 

ρt(i, j)

t′￼ ≠ t
Ai,t′￼

Aj,t′￼
= 1

N

users

T time

Non-parametric estimate: Agnostic to policy and model!

23



Next: Theoretical guarantees

  1. Sequential CLT for non-linear latent factor model

  2. Anytime consistency for bilinear latent factor model

24
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Lipschitz : Central limit theorem for sequential estimation of f Y⋆
i,T

Consider a non-linear Lipschitz , and suppose


• iid unit factors , time factors  on bounded domain


• iid bounded noise  with mean , variance 


• sequential policies , i.e.,  depends on all users’ history till ; 
treatments  assigned independently given the history


Under regularity conditions with a suitable scaling of , for any fixed user  at last 
time  with number of neighbors  
          as   together at suitable rates

f

{uj} {vt}

{εj,t} 0 σ2

{πt} πt t − 1
{Aj,t}

η i
T Ni,T

Ni,T( ̂Yi,T − Y⋆
i,T) ⟹ 𝒩(0, σ2) N, T → ∞

25
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Lipschitz : Non-asymptotic expected squared error boundf

   +             +     

 
 
 
    

       
 

𝔼 [( ̂Yi,T − Y⋆
i,T)2 |ui] ≾ (η − 2σ2)

D2(1 + γi,T)

p2
min ,T T − 1

σ2

pmin ,T ΦiN

pmin ,T = min
t,j

πt( j)

Φi = ℙu (𝔼v[ f(ui, v) − f(u, v)2] ≤ η/2 − σ2)

γi,T = sup
j≠i,t<T

𝔼[𝔼(ΣT−1
t′￼=t+1Mi,t′￼

Mj,t′￼
|historyt) − 𝔼(ΣT−1

t′￼=t+1Mi,t′￼
Mj,t′￼′￼

|historyt−1)]
Cumulative future dependency of sampling policy of data at one time 

Probability of sampling a nearest neighbor

min probability of sampling any entry

Bias due 
to η

Concentration of 
neighbor distance

Effective noise 
variance

27
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   +             +     

 
 
 
    

       
 

𝔼 [( ̂Yi,T − Y⋆
i,T)2 |ui] ≾ (η − 2σ2)

D2(1 + γi,T)

p2
min ,T T − 1

σ2

pmin ,T ΦiN

pmin ,T = min
t,j

πt( j)

Φi = ℙu (𝔼v[ f(ui, v) − f(u, v)2] ≤ η/2 − σ2)

γi,T = sup
j≠i,t<T

𝔼[𝔼(ΣT−1
t′￼=t+1Mi,t′￼

Mj,t′￼
|historyt) − 𝔼(ΣT−1

t′￼=t+1Mi,t′￼
Mj,t′￼′￼

|historyt−1)]
Cumulative future dependency of sampling policy of data at one time 

Probability of sampling a nearest neighbor

min probability of sampling any entry

Lipschitz : Non-asymptotic expected squared error boundf

Bias due 
to η

Concentration of 
neighbor distance

Effective noise 
variance

 bound on observationD =

28
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   +             +     

 
 
 
    

       
 

𝔼 [( ̂Yi,T − Y⋆
i,T)2 |ui] ≾ (η − 2σ2)

D2(1 + γi,T)

p2
min ,T T − 1

σ2

pmin ,T ΦiN

pmin ,T = min
t,j

πt( j)

Φi = ℙu (𝔼v[ f(ui, v) − f(u, v)2] ≤ η/2 − σ2)

γi,T = sup
j≠i,t<T

𝔼[ ΣT−1
t′￼=t+1Ai,t′￼

Aj,t′￼
| historyt ] − 𝔼 [ ΣT−1

t′￼=t+1Ai,t′￼
Aj,t′￼

| historyt−1 ]

Cumulative future dependency of adaptive policies on one column

Probability of sampling a nearest neighbor

min probability of sampling any entry

Lipschitz : Non-asymptotic expected squared error boundf

Bias due 
to η

Concentration of 
neighbor distance

Effective noise 
variance

 bound on observationD =
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Regularity conditions needed for the CLT

   +             +     

 

𝔼 [( ̂Yi,T − Y⋆
i,T)2 |ui] ≾ (η − 2σ2)

D2(1 + γi,T)

p2
min ,T T − 1

σ2

pmin ,T ΦiN

``Bias” terms go to zero after multiplying  by 
number of neighbors :


-  goes to zero fast enough


-  can not grow faster than  
(cap number of nearest neighbors)

Ni,T
η − 2σ2

Ni,T p2
min ,T T

The denominator (min 
number of nearest 

neighbors) goes to ∞

(See the paper for detailed examples)
31
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: A consistency result for any time f(u, v) = ⟨u, v⟩ t

Assuming bounded observations and


• iid latent unit and time factors  with positive definite 
covariance  on bounded domain


• iid bounded noise  with mean , variance 


• adaptive policies  that introduce ``weak correlations’’


then with suitable scaling of ( , ) 

{uj} {vt}
𝕍⋆

{εj,t} 0 σ2

{πt}

η N, T

32
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: A consistency result for any time f(u, v) = ⟨u, v⟩ t

Assuming bounded observations and


• iid latent unit and time factors  with positive definite 
covariance  on bounded domain


• iid bounded noise  with mean , variance 


• adaptive policies  that introduce ``weak correlations’’


then with suitable scaling of ( , ) 

{uj} {vt}
𝕍⋆

{εj,t} 0 σ2

{πt}

η N, T

  in probability for any fixed .̂Yi,t → Y⋆
i,t (i, t)
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Under the regularity conditions 
 

                         

                                                                                          

                                                                                        

 
where 

ρt(i, j) ≤ η ⟹ (ui − uj)⊤
∑t′￼≠t Aj,t′￼

Ai,t′￼
vt′￼

v⊤
t′￼

∑t′￼≠t Aj,t′￼
Ai,t′￼

(ui − uj) ≾ η − cσ2

⟹ ∥ui − uj∥2 ≾
η − cσ2

λ

⟹ |Y⋆
i,t − Y⋆

j,t | ≾ ∥vt∥2 ⋅
η − cσ2

λ

λ = λmin(𝕍⋆)

Proof sketch: Advantage of bilinearity

weak correlations
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Under the regularity conditions 
 

                         

                                                                                          

                                                                                        

 
where 

ρt(i, j) ≤ η ⟹ (ui − uj)⊤
∑t′￼≠t Aj,t′￼

Ai,t′￼
vt′￼

v⊤
t′￼

∑t′￼≠t Aj,t′￼
Ai,t′￼

(ui − uj) ≾ η − cσ2

⟹ ∥ui − uj∥2 ≾
η − cσ2

λ

⟹ |Y⋆
i,t − Y⋆

j,t | ≾ ∥vt∥2 ⋅
η − cσ2

λ

λ = λmin(𝕍⋆)

Proof sketch: Advantage of bilinearity

weak correlations

pos. def. covariance + weak correlations

Cauchy-Schwarz
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Summary:  
Counterfactual inference in sequential experiments

Policy πt+1Policy πt
Observed data of 
all  users till N t−1

Observed data of 
all  users at N t

Unobserved 
variables

Sequential experimental design
https://rzrsk.github.io 

36
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Summary:  
Counterfactual inference in sequential experiments

(For each treatment separately)


 


 
Latent factor model: 
            

Zi,t = {
Y⋆

i,t + εi,t if Ai,t = 1
unknown if Ai,t = 0

Y⋆
i,t = f(ui, vt)

Nearest neighbor 
estimate  for  by 

measuring distance 
over time 

̂Yi,t Y⋆
i,t

Policy πt+1Policy πt
Observed data of 
all  users till N t−1

Observed data of 
all  users at N t

Unobserved 
variables

Sequential experimental design Modeling assumptions Algorithm
https://rzrsk.github.io 
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Summary:  
Counterfactual inference in sequential experiments

Bilinear f
Lipschitz non-

linear f

(For each treatment separately)


 


 
Latent factor model: 
            

Zi,t = {
Y⋆

i,t + εi,t if Ai,t = 1
unknown if Ai,t = 0

Y⋆
i,t = f(ui, vt)

Nearest neighbor 
estimate  for  by 

measuring distance 
over time 

̂Yi,t Y⋆
i,t

Any-time consistency 
 ̂Yi,t → Y⋆

i,t

Sequential CLT

Ni,T ( ̂Yi,T−Y⋆
i,T)⇒𝒩(0,σ2)

Policy πt+1Policy πt
Observed data of 
all  users till N t−1

Observed data of 
all  users at N t

Unobserved 
variables

Sequential experimental design Modeling assumptions Algorithm

Guarantees

https://rzrsk.github.io 

38

https://rzrsk.github.io


Counterfactual inference (Raaz Dwivedi)

Coming this fall…
• Confidence intervals for average treatment effects


• An improved ``doubly-robust’’ variant of nearest neighbors


• Several future directions:


• Use of covariates/contexts


• Temporal structure (dynamical system)


• Leveraging information across treatments

39
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Thank you! 
Counterfactual inference in sequential experiments

Bilinear f
Lipschitz non-

linear f

Policy πt+1Policy πt
Observed data of 
all  users till N t−1

Observed data of 
all  users at N t

Unobserved 
variables

Sequential experimental design Modeling assumptions Algorithm

Guarantees

(For each treatment separately)


 


 
Latent factor model: 
            

Zi,t = {
Y⋆

i,t + εi,t if Ai,t = 1
unknown if Ai,t = 0

Y⋆
i,t = f(ui, vt)

Nearest neighbor 
estimate  for  by 

measuring distance 
over time 

̂Yi,t Y⋆
i,t

Any-time consistency 
 ̂Yi,t → Y⋆

i,t

Sequential CLT

Ni,T ( ̂Yi,T−Y⋆
i,T)⇒𝒩(0,σ2)

https://rzrsk.github.io 
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Additional slides
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Explicit non-asymptotic bound 
for the bilinear case
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•  =  commonly observed time points between  and  other than   
(used to compute distance )


•  = nearest neighbors for 


• Deterministic error bound: 

      

Tt,i,j i j t
ρt(i, j)

Ni,t (i, t)

( ̂Yi,t − Y⋆
i,t)

2 ≾
∥vt∥2

2

λ (η − cσ2 +
⟨noise, {vt}⟩
minj∈Ni,t

Tt,i,j ) +
∑j∈Ni,t

noisej,t

|Ni,t |

2

: A deterministic error bound for any f(u, v) = ⟨u, v⟩ (i, t)
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Gaussian process as a bilinear 
latent factor model
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Counterfactual inference (Raaz Dwivedi)

v2

u1

u2

v1

uN

vt

user

latent

factors

time latent factors

 latent factor for user 

 latent factor for time 


  unknown (non) linear function

ui : i
vt : t
f :

Latent factor model 
Y⋆

i,t ≜ Y(1)
i,t ≜ f(ui, vt)

• Gaussian process with mean  
in the reproducing kernel Hilbert 
space of the covariance kernel , 
which has eigenfunctions  then 
 

, 
 

, and 
 

.

Y⋆
i,⋅ ∼ m

k
ϕj

f(u, v) = ⟨u, v⟩

ui = (⟨m, ϕj⟩)r
j=1 + 𝒩(0,Ir)

vt = (ϕj(xt))r
j=1

45



Counterfactual inference (Raaz Dwivedi)

Gaussian process as a latent factor model

• If each user’s data is a sample from  where  is Mercer’s kernel  such 
that 

                                 ,    

where  denote eigenvalue-eigenfunctions with  orthonormal


• Then for , we have 
       

             almost surely   

for  , and 

𝒢𝒫(0,k) k

k(t1, t2) =
∞

∑
ℓ=1

λℓϕℓ(t1)ϕℓ(t2)

λℓ, ϕℓ {ϕℓ}

ξi,ℓ ∼iid 𝒩(0,1)

Yi,t =
∞

∑
ℓ=1

ξi,ℓ λℓϕℓ(t) ⟹ Yi,t = f(ui, vt) = ⟨ui, vt⟩

ui = (a1, a2, …) + (ξi,1, ξi,2, …) vt = ( λ1ϕ1(t), λ2ϕ2(t), …)
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Counterfactual inference (Raaz Dwivedi)

Example: Exchangeable data

• The latent factor model also holds if the matrix 
 for a sub-class of exchangeable data 

i.e., exchangeable under row and column permutations 

• See Sec II.C Li et al. 2017

{Y⋆
i,t + εi,t, i = 1,… . N, t = 1,…, T}
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Mathematical description of 
nearest neighbors
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Counterfactual inference (Raaz Dwivedi)

Nearest neighbors estimate for Y⋆
i,t

• Input: Partially observed matrix; Output: Estimate of noiseless entry 


• Algorithm: Compute


• Available neighbors at time   


• Good neighbors for user  at time    where   
              

                      


•  = Simple average of   over .

(i, t)

t = {j : Aj,t = 1}

i t = {j : ρt(i, j) ≤ η}

ρt(i, j) =
1

∑t′￼≠t Ai,t′￼
Aj,t′￼

∑
t′￼≠t

(Zi,t′￼
− Zj,t′￼

)2Ai,t′￼
Aj,t′￼

̂Yi,t Yj,t {j : Aj,t = 1 and ρt(i, j) ≤ η}
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Further details about prior work
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Counterfactual inference (Raaz Dwivedi)

Data collected with a fixed policy: Off policy evaluation

• Set-up considers either


• i.i.d. users, e.g., multi-armed bandits


• or, one user over time, e.g., Markov decision proces


• but not multiple users over multiple time


• Quantities of interest: Average reward under alternative policy, 
estimated using IPW-based estimates, switch estimators etc.

[ …, Li et al 2015, Wang et al. 2021, Ma et al. 2021,… ]
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Counterfactual inference (Raaz Dwivedi)

Diverse mobile health applications
Smoking addiction

Physical activity  Binge drinking

Image credits: Susan Murphy

Well-being Wearable/trackers

Recovery support
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