Counterfactual inference in sequential experimental design

Raaz Dwivedi

Joint work with

https://rzrsk.github.io

Susan Murphy

Devavrat Shah

Harvard John A. Paulson **School of Engineering** and Applied Sciences

Statistical Machine Learning Session, IMS Annual Meeting

June 30, 2022

Sequential decision making problems

- Online education: Enhance teaching strategies for better learning
- Online advertising: Update ads / placements to increase revenue
- Mobile health: Personalized app notifications to promote healthy behavior

Physical activity

Image credits: Susan Murphy Counterfactual inference (Raaz Dwivedi)

Mobile health trial: A simplified but representative set-up

$Y_{i,t}^{(a)} = \text{potential outcome of user } i$ at time t under treatment $a \in \{0,1\}$

- Neyman-Rubin potential outcome framework
- No spill-over of treatment on future outcomes

Image credits: apps.garmin.com **Counterfactual inference (Raaz Dwivedi)**

Mobile health trial: A simplified but representative set-up

For time t = 1, 2, ..., TFor user i = 1, ..., N1. **Assign** $A_{i,t} \leftarrow \begin{cases} 1 & \text{(notify)} \text{ with prob. } \pi_{t,i} \\ 0 & \text{(do nothing)} \text{ with prob. } 1 - \pi_{t,i} \end{cases}$

2. **Observe**
$$Z_{i,t} = Y_{i,t}^{(A_{i,t})} + \varepsilon_{i,t}$$

Update policy to $\pi_{t+1} \in [0,1]^N$ using history_t

$Y_{it}^{(a)} = \text{potential outcome of user } i$ at time t under treatment $a \in \{0, 1\}$

- Neyman-Rubin potential outcome framework

- No spill-over of treatment on future outcomes

(step count)

Image credits: apps.garmin.com **Counterfactual inference (Raaz Dwivedi)**

This talk: Sequential experiments

[Yom-Tov '17, Tomkins et al. '20]

Setting overview

This talk: Sequential experiments

[Yom-Tov '17, Tomkins et al. '20]

Setting overview

[Yom-Tov '17, Tomkins et al. '20]

This talk: Sequential experiments

[Yom-Tov '17, Tomkins et al. '20]

Setting overview

Prior work

Dynamic treatment regime

- i.i.d. trajectories across users
- e.g., personalized clinical treatment [Robins '86, Murphy '03, Bojinov et al. '21]

Policy evaluation for bandits

- i.i.d. users at each time
- e.g, online ads

[Zhang et al. '21, Hadad et al. '21, Bibaut et al. '21]

This talk: Sequential experiments

[Yom-Tov '17, Tomkins et al. '20]

Setting overview

Prior work

Dynamic treatment regime

- i.i.d. trajectories across users
- e.g., personalized clinical treatment [Robins '86, Murphy '03, Bojinov et al. '21]

Policy evaluation for bandits

- i.i.d. users at each time
- e.g, online ads [Zhang et al. '21, Hadad et al. '21, Bibaut et al. '21]

Causal panel data (observational studies)

- users treated forever after t₀
- e.g, law enforcement in california [Abadie et al. '03, Chernozhukov et al. '17, Athey et al. '18, Agarwal et al. '21]

Goals overview

Prior work

Dynamic treatment regime

Average treatment effect (ATE)

Policy evaluation for bandits

Off-policy evaluation (OPE)

Causal panel data

Average treatment effect (ATE)

This talk: **Counterfactual inference in** sequential experiments

user x time-level treatment effect -allows generic after-study analyses including ATE, OPE

Goals overview

Prior work

Dynamic treatment regime

Average treatment effect (ATE)

Policy evaluation for bandits

Off-policy evaluation (OPE)

Causal panel data

Average treatment effect (ATE)

With stronger goals come stronger assumptions!

Equivalently, stronger responsibilities require stronger assumptions!

Or, great responsibilities requires great power!

 u_i : latent factor for user i

- v_t : latent factor for time t
- f: unknown (non) linear function

N user latent factors (e.g., personal traits)

T time latent factors (e.g., societal, weather changes)

 u_i : latent factor for user i

- v_t : latent factor for time t
- f: unknown (non) linear function

N user latent factors (e.g., personal traits)

T time latent factors (e.g., societal, weather changes)

 u_i : latent factor for user i

- v_t : latent factor for time t
- f: unknown (non) linear function

N user latent factors (e.g., personal traits)

T time latent factors (e.g., societal, weather changes)

 u_i : latent factor for user i

- v_t : latent factor for time t
- *f* : unknown (non) linear function

N user latent factors (e.g., personal traits)

T time latent factors (e.g., societal, weather changes)

 u_i : latent factor for user i

- v_t : latent factor for time t
- f: unknown (non) linear function

N user latent factors (e.g., personal traits)

T time latent factors (e.g., societal, weather changes)

Examples include:

• $Y_{i,\cdot}^{\star} \sim \text{Gaussian process with}$ covariance kernel **k**

$$u_i = \text{Gaussian vector}$$
$$v_t = \text{Eigenfunctions of } \mathbf{k}$$
$$f(u, v) = \langle u, v \rangle$$

Sub-class of exchangeable data

 u_i : latent factor for user i

- v_t : latent factor for time t
- f: unknown (non) linear function

N user latent factors (e.g., personal traits)

T time latent factors (e.g., societal, weather changes)

Essentially a low-rank factorization assumption—can check via **singular value decomposition!**

Algorithm: Reduce counterfactual inference to sequential matrix completion

- Fix treatment say 1, with $Y_{i,t}^{\star} \triangleq Y_{i,t}^{(1)}$
- $N \times T$ matrix of potential outcomes with missing at random entries

$$Z_{i,t} = \begin{cases} Y_{i,t}^{\star} + \varepsilon_{i,t} & \text{if } A_{i,t} = 1\\ \text{unknown } \text{if } A_{i,t} = 0 \end{cases} \text{ where } A_{i,t} = \text{Bernoulli}(\pi_{t,i}) \end{cases}$$

policy can depend on observed outcomes of all treatments

• New goal: Estimate missing entries $Y_{i,t}^{\star}$ (separately for each treatment)

Algorithm: A variant of nearest neighbors T time Observed Missing users

Ν

Estimating $Y_{i,t}^{\star}$ via a variant of nearest neighbors T time Observed Missing Estimate Ν $Y_{i,t}^{\star}$ users Available users: Outcome Available observed at time t Available Available

T time

$$\rho_t(i, j) =$$
Averaged squesting over t' \neq t s
that $A_{i,t'}A_{j,t'}$

uared ween such = 1

T time

for suitable threshold η

$$\rho_t(i, j) =$$
Averaged squad
distance betwo
over $t' \neq t$ s
that $A_{i,t'}A_{j,t'}$

uared ween such = 1

Next: Theoretical guarantees

Sequential CLT for non-linear latent factor model
 Anytime consistency for bilinear latent factor model

Lipschitz f

Consider a **non-linear Lipschitz** *f*, and suppose

- iid unit factors $\{u_i\}$, time factors $\{v_t\}$ on bounded domain
- iid bounded noise $\{\varepsilon_{i,t}\}$ with mean 0, variance σ^2
- sequential policies $\{\pi_t\}$, i.e., π_t depends on all users' history till t-1; treatments $\{A_{i,t}\}$ assigned independently given the history

Lipschitz f: Central limit theorem for sequential estimation of $Y_{i,T}^{\star}$

Consider a **non-linear Lipschitz** *f*, and suppose

- iid unit factors $\{u_i\}$, time factors $\{v_t\}$ on bounded domain
- iid bounded noise $\{\varepsilon_{i,t}\}$ with mean 0, variance σ^2
- sequential policies $\{\pi_t\}$, i.e., π_t depends on all users' history till t 1; treatments $\{A_{i,t}\}$ assigned independently given the history

<u>time T</u> with number of neighbors $N_{i,T}$ $\sqrt{N_{i,T}}(\hat{Y}_{i,T} - Y_{i,T}^{\star}) \Longrightarrow \mathcal{N}(0,\sigma^2) \quad \text{as } N, T \to \infty \text{ together at suitable rates}$

- Under regularity conditions with a suitable scaling of η , for <u>any fixed user *i* at last</u>

 $\mathbb{E}\left[(\hat{Y}_{i,T} - Y_{i,T}^{\star})^2 | u_i\right] \lesssim (\eta - 2\sigma^2) +$

Bias due to η

$$\frac{D^{2}(1 + \gamma_{i,T})}{p_{\min,T}^{2}\sqrt{T - 1}} + \frac{\sigma^{2}}{p_{\min,T}\Phi_{i}N}$$
Concentration of neighbor distance

$$\mathbb{E}\left[(\hat{Y}_{i,T} - Y_{i,T}^{\star})^2 | u_i\right] \lesssim (\eta - 2\sigma^2) +$$

Bias due to η

bound on observation D =

 $p_{\min,T} = \min_{t,j} \pi_t(j)$ min probability of sampling any entry

$$\frac{D^{2}(1 + \gamma_{i,T})}{p_{\min,T}^{2}\sqrt{T - 1}} + \frac{\sigma^{2}}{p_{\min,T}\Phi_{i}N}$$
Concentration of
neighbor distance Effective noise
variance

$$\mathbb{E}\left[(\widehat{Y}_{i,T} - Y_{i,T}^{\star})^2 | u_i\right] \lesssim (\eta - 2\sigma^2) \quad -$$

Bias due to η

D = bound on observation

 $p_{\min,T} = \min_{t,j} \pi_t(j) \quad \text{min probability of sampling any entry} \\ \Phi_i = \mathbb{P}_u \left(\mathbb{E}_v[f(u_i, v) - f(u, v)^2] \le \eta/2 - \sigma^2 \right) \quad \text{Probability of sampling a nearest neighbor}$

$$E\left[(\hat{Y}_{i,T} - Y_{i,T}^{\star})^2 | u_i\right] \lesssim (\eta - 2\sigma^2) + \frac{D^2(1 + \gamma_{i,T})}{p_{\min,T}^2 \sqrt{T - 1}} + \frac{\sigma^2}{p_{\min,T} \Phi_i N}$$

Bias due to η
Concentration of neighbor distance
Effective noise variance

bound on observation

 $p_{\min,T} = \min_{t,j} \pi_t(j) \quad \text{min probability of sampling any entry} \\ \Phi_i = \mathbb{P}_u \left(\mathbb{E}_v[f(u_i, v) - f(u, v)^2] \le \eta/2 - \sigma^2 \right) \quad \text{Probability of sampling a nearest neighbor}$

$$\gamma_{i,T} = \sup_{j \neq i,t < T} \left| \mathbb{E} \left[\sum_{t'=t+1}^{T-1} A_{i,t'} A_{j,t'} \right| \text{history}_{t} \right] - \mathbb{E} \left[\sum_{t'=t+1}^{T-1} A_{i,t'} A_{j,t'} \right| \text{history}_{t-1} \right]$$

Cumulative future dependency of adaptive policies on one column

Regularity conditions needed for the CLT

 $\mathbb{E}\left[(\hat{Y}_{i,T} - Y_{i,T}^{\star})^2 | u_i \right] \lesssim (\eta - 2\sigma^2) + \frac{D^2(1 + \gamma_{i,T})}{p_{\min T}^2 \sqrt{T - 1}} + \frac{\sigma^2}{p_{\min,T} \Phi_i N}$

"Bias" terms go to zero after multiplying by number of neighbors $N_{i,T}$: - $\eta - 2\sigma^2$ goes to zero fast enough

- $N_{i,T}$ can **not** grow faster than $p_{\min,T}^2 \sqrt{T}$ (cap number of nearest neighbors)

(See the paper for detailed examples) 31

The denominator (min number of nearest neighbors) goes to ∞

 $f(u, v) = \langle u, v \rangle$

Assuming bounded observations and

- iid latent unit $\{u_i\}$ and time factors $\{v_t\}$ with positive definite covariance V^* on bounded domain
- iid bounded noise $\{\varepsilon_{i,t}\}$ with mean 0, variance σ^2
- adaptive policies $\{\pi_t\}$ that introduce ``weak correlations"

Assuming bounded observations and

- iid latent unit $\{u_i\}$ and time factors $\{v_i\}$ with positive definite covariance V^* on bounded domain
- iid bounded noise $\{\varepsilon_{i,t}\}$ with mean 0, variance σ^2
- adaptive policies $\{\pi_t\}$ that introduce ``weak correlations"
- then with suitable scaling of (η, N, T)

$f(u, v) = \langle u, v \rangle$: A consistency result for <u>any time t</u>

 $\hat{Y}_{i,t} \rightarrow Y_{i,t}^{\star}$ in probability for any fixed (i, t).

Proof sketch: Advantage of bilinearity

Under the regularity conditions

weak correlations $\rho_t(i,j) \le \eta \qquad \Longrightarrow \qquad (u_i - u_j)^\top \left(\frac{\sum_{i=1}^n u_i}{\sum_{i=1}^n u_i}\right)^\top \left(\frac{\sum_{i=1}^n u_i$

$$\frac{\sum_{t'\neq t} A_{j,t'}A_{i,t'}v_{t'}v_{t'}^{\mathsf{T}}}{\sum_{t'\neq t} A_{j,t'}A_{i,t'}} \left(u_i - u_j \right) \lesssim \eta - c\sigma^2$$

Proof sketch: Advantage of bilinearity

Under the regularity conditions

pos. def. covariance + weak correlations

where $\lambda = \lambda_{\min}(\mathbb{V}^{\star})$

$$\frac{\sum_{t'\neq t} A_{j,t'}A_{i,t'}v_{t'}v_{t'}^{\mathsf{T}}}{\sum_{t'\neq t} A_{j,t'}A_{i,t'}} \left\| u_i - u_j \right\|_2 \lesssim \eta - c\sigma^2$$
$$\| u_i - u_j \|_2 \lesssim \sqrt{\frac{\eta - c\sigma^2}{\lambda}}$$
$$\| Y_{i,t}^{\star} - Y_{j,t}^{\star} \| \lesssim \| v_t \|_2 \cdot \sqrt{\frac{\eta - c\sigma^2}{\lambda}}$$

Summary: Counterfactual inference in sequential experiments

Sequential experimental design

Summary: Counterfactual inference in sequential experiments

Sequential experimental design

Modeling assumptions

<u>Algorithm</u>

(For each treatment separately) $Y_{i,t}^{\star} + \varepsilon_{i,t}$ if $A_{i,t} = 1$ unknown if $A_{i,t} = 0$ $Z_{i,t} =$ Latent factor model: $Y_{i,t}^{\star} = f(u_i, v_t)$

Nearest neighbor estimate $\widehat{Y}_{i,t}$ for $Y_{i,t}^{\star}$ by measuring distance over time

Summary: Counterfactual inference in sequential experiments

<u>Sequential experimental design</u>

Guarantees

Modeling assumptions

<u>Algorithm</u>

(For each treatment separately)

$$Z_{i,t} = \begin{cases} Y_{i,t}^{\star} + \varepsilon_{i,t} & \text{if } A_{i,t} = 1 \\ \text{unknown } \text{if } A_{i,t} = 0 \end{cases}$$
Latent factor model:

$$Y_{i,t}^{\star} = f(u_i, v_t)$$

Nearest neighbor estimate $\widehat{Y}_{i,t}$ for $Y_{i,t}^{\star}$ by measuring distance over time

Lipschitz nonlinear f

- Confidence intervals for average treatment effects
- An improved ``doubly-robust" variant of nearest neighbors
- Several future directions:
 - Use of covariates/contexts
 - Temporal structure (dynamical system)
 - Leveraging information across treatments

Coming this fall...

Thank you! Counterfactual inference in sequential experiments

Sequential experimental design

Guarantees

Modeling assumptions

(For each treatment separately) $\begin{cases} Y_{i,t}^{\star} + \varepsilon_{i,t} & \text{if } A_{i,t} = 1 \\ \text{unknown } \text{if } A_{i,t} = 0 \end{cases}$ $Z_{i,t} =$ Latent factor model: $Y_{i,t}^{\star} = f(u_i, v_t)$

Nearest neighbor estimate $\widehat{Y}_{i,t}$ for $Y_{i,t}^{\star}$ by measuring distance over time

Lipschitz nonlinear f

Additional slides

Explicit non-asymptotic bound for the bilinear case

- (used to compute distance $\rho_t(i, j)$)
- $N_{i,t}$ = nearest neighbors for (i, t)
- Deterministic error bound:

$$(\hat{Y}_{i,t} - Y_{i,t}^{\star})^2 \preceq \frac{\|v_t\|_2^2}{\lambda} \left(\eta - c\sigma^2 \cdot \frac{\|v_t\|_2^2}{\lambda}\right)^2$$

$f(u, v) = \langle u, v \rangle$: A deterministic error bound for any (i, t)

• $T_{t,i,j}$ = commonly observed time points between *i* and *j* other than *t*

 $+\frac{\langle \text{noise, } \{v_t\}\rangle}{\min_{j\in N_{i,t}} T_{t,i,j}}\right) + \left(\frac{\sum_{j\in N_{i,t}} \text{noise}_{j,t}}{|N_{i,t}|}\right)^2$

Gaussian process as a bilinear latent factor model

Latent factor model $Y_{i,t}^{\star} \triangleq Y_{i,t}^{(1)} \triangleq f(u_i, v_t)$

 u_i : latent factor for user i

- v_t : latent factor for time t
- f: unknown (non) linear function

user latent factors

time latent factors

 Y^{*}_{i,·} ~ Gaussian process with mean m in the reproducing kernel Hilbert space of the covariance kernel k, which has eigenfunctions φ_j then

$$f(u,v) = \langle u,v \rangle,$$

$$u_i = (\langle m, \phi_j \rangle)_{j=1}^r + \mathcal{N}(0, I_r), \text{ and }$$

$$v_t = (\phi_j(x_t))_{j=1}^r.$$

Gaussian process as a latent factor model

• If each user's data is a sample from $\mathscr{GP}(0,\mathbf{k})$ where **k** is Mercer's kernel such that

 $\mathbf{k}(t_1, t_2) = \sum \lambda_{\ell} \phi_{\ell}(t_1) \phi_{\ell}(t_2),$ $\ell = 1$

• Then for $\xi_{i,\ell} \sim_{iid} \mathcal{N}(0,1)$, we have

$$Y_{i,t} = \sum_{\ell=1}^{\infty} \xi_{i,\ell} \sqrt{\lambda_{\ell}} \phi_{\ell}(t) \text{ almost}$$

for $u_i = (a_1, a_2, ...) + (\xi_{i,1}, \xi_{i,2}, ...), a_{\ell}$

- where $\lambda_{\ell}, \phi_{\ell}$ denote eigenvalue-eigenfunctions with $\{\phi_{\ell}\}$ orthonormal

- st surely $\implies Y_{i,t} = f(u_i, v_t) = \langle u_i, v_t \rangle$
- and $v_t = (\sqrt{\lambda_1}\phi_1(t), \sqrt{\lambda_2}\phi_2(t), \dots)$

Example: Exchangeable data

• The latent factor model also holds if the matrix i.e., exchangeable under row and column permutations

• See Sec II.C Li et al. 2017

 $\{Y_{i,t}^{\star} + \varepsilon_{i,t}, i = 1, \dots, N, t = 1, \dots, T\}$ for a sub-class of exchangeable data

Mathematical description of nearest neighbors

Nearest neighbors estimate for $Y_{i,t}^{\star}$

- Input: Partially observed matrix; **Output**: Estimate of noiseless entry (*i*, *t*)
- Algorithm: Compute
 - Available neighbors at time t =
 - Good neighbors for user *i* at time $t = \{j : \rho_t(i, j) \le \eta\}$ where

$$\rho_t(i,j) = \frac{1}{\sum_{t' \neq t} A_{i,t'} A_{j,t'}} \sum_{t' \neq t} (Z_{i,t'} - Z_{j,t'})^2 A_{i,t'} A_{j,t'}$$

• $\hat{Y}_{i,t}$ = Simple average of $Y_{i,t}$ over $\{j : A_{i,t} = 1 \text{ and } \rho_t(i,j) \le \eta\}$.

$$\{j: A_{j,t} = 1\}$$

Further details about prior work

Data collected with a <u>fixed</u> policy: Off policy evaluation

- Set-up considers either
 - i.i.d. users, e.g., multi-armed bandits
 - or, one user over time, e.g., Markov decision proces
 - but **not** multiple users over multiple time
- Quantities of interest: Average reward under alternative policy, estimated using IPW-based estimates, switch estimators etc.

```
[..., Li et al 2015, Wang et al. 2021, Ma et al. 2021,...]
                              51
                                                              Counterfactual inference (Raaz Dwivedi)
```


Diverse mobile health applications

Smoking addiction

Binge drinking

Well-being

Recovery support

Physical activity

Image credits: Susan Murphy (Raaz Dwivedi)

