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Sequential decision making problems
• Online education: Enhance teaching strategies for better learning 

• Online advertising: Update ads / placements to increase revenue 

• Mobile health: Personalized app messages to promote healthy behavior 

Physical activity  Wearable/trackers
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  = potential outcome of user   at time   under treatment    

For time   

For user   

1. Randomly send a notification ( ) or not  ( ) using a sampling 
policy   with   

2. Observe outcome   

Update policy to   using all the data till time  

Y(a)
i,t i t a ∈ {0,1}

t = 1,2,...,T

i = 1,...,N

Ai,t = 1 Ai,t = 0
πt ∈ [0,1]N πt(i) = ℙ(Ai,t = 1 |historyt−1)

Zi,t = Y (Ai,t)
i,t + εi,t

πt+1 t

noise (e.g., due to noisy measurements 
from sensors)

Mobile health trial: A simplified but representative set-up

- Neyman-Rubin potential outcome framework  
- No spill-over of treatment on future outcomes

Policy  πt+1Policy  πt
Observed data for 
all   users till  N t − 1

Observed data for 
all   users at  N t

Unobserved 
variables

- Adaptive policy to personalize to  users 
- Data pooled across users during study learn a good policy quickly 
- After-study questions: Was the treatment effective? On average? 

Heterogeneity across users? …

[…, Yom-Tov 2017, …, Tomkins et al. 2020]

Sequential experimental design: After-study inference

• Fix treatment say 1, with   

•   matrix of potential outcomes with missing at random entries 
 

          where   

• New goal: Estimate missing entries   (separately for each treatment) 
policy can depend on observed outcomes of all treatments

Y⋆
i,t ≜ Y(1)

i,t

N × T

Zi,t = {
Y⋆

i,t + εi,t if Ai,t = 1
unknown if Ai,t = 0 Ai,t = Bernoulli(πt(i))

Y⋆
i,t

So what do we do?  
Reduce counterfactual inference to sequential matrix completion

Observed

Missing

Estimate 

Available

Available

Available

Y⋆
i,t

    Average( ) over available users   with   ̂Yi,t = Yj,t j ρt(i, j) ≤ η for suitable 
threshold  η

Estimating   via a variant of nearest neighborsY⋆
i,t

Available users: 
Outcome 
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time  t

  = 
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than time  
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  latent factor for user   
  latent factor for time   
   unknown (non) linear function

ui : i
vt : t
f :

Latent factor model 
 Y⋆

i,t ≜ Y(1)
i,t ≜ f(ui, vt)

N 
user 

latent 
factors

T time latent factors

Examples include: 

•  Gaussian process with 
covariance kernel   
 
 Gaussian vector 
 Eigenfunctions of   
  

• Also a sub-class of 
exchangeable data

Y⋆
i,⋅ ∼

k

ui =
vt = k
f(u, v) = ⟨u, v⟩

Preprint: https://arxiv.org/abs/2202.06891

Our goal: Counterfactual inference, i.e., estimation of all missing 
potential outcomes—hard due to heterogeneity across users, 

time and treatments 

Adaptivity and pooling of data across   users for sequential 
policy design makes after-study inference even more challenging

N

- can be used for generic after-study analyses, e.g., individual treatment effect  Y(1)
i,t − Y(0)

i,t

Will such a non-parametric estimate that is policy and data 
agnostic work for sequential experimental design?  
Yes, under a latent factor model! and suitable conditions

 : A distribution-free consistency for any  f(u, v) = ⟨u, v⟩ (i, t)
Consider any   with enough nearest neighbors   satisfying the conditions 

• ``diverse latent-time factors’’:   for   

    =  commonly observed time points other than  ; used to compute distance   

• ``non-adversarial noise’’ across  : behave roughly like iid/mixing process 

For suitable scaling of threshold   & mild conditions on arbitrarily dependent policy,  
given user   with latent factor  , we have 
 
                                                for any   as   

(i, t) j

1
Tt,i,j ∑

t′ ∈Tt,i,j

vt′ 
v⊤

t′ 
⪰ λId λ > 0

Tt,i,j t ρt(i, j)

Tt,i,j ∪ {t}

η
i ui

̂Yi,t → Y⋆
i,t t N, T → ∞

Lipschitz  : Central limit theorem for sequential estimation of  f Y⋆
i,T

Consider a non-linear Lipschitz   (with  ), and suppose 

•  ,  ,  

•  ,  ,   

•   depends on all users’ history till  ; treatments  assigned 
independently given the history 

Under regularity conditions, given any user   at last time   with number of 
neighbors   
           as    together at suitable rates

f ∥f∥∞ ≤ D

uj ∼iid ℙuser vt ∼iid ℙtime

εj,t ∼iid ℙnoise '[εj,t] = 0 '[ε2
j,t] = σ2

πt t − 1 {Aj,t}

i T
Ni,T

Ni,T( ̂Yi,T − Y⋆
i,T) ⟹ *(0,σ2) N, T → ∞

    +              +      

 
 
 
     

        
 
 

! [( ̂Yi,T − Y⋆
i,T)2 |ui] ≾ (η − 2σ2)

D2(1 + γi,T)
p2

min ,T T − 1
σ2

pmin ,T ΦiN

pmin ,T = min
t,j

πt( j)
Φi = ℙu (!v[ f(ui, v) − f(u, v)2] ≤ η/2 − σ2)

γi,T = sup
j≠i,t<T

![ ΣT−1
t′ =t+1Ai,t′ 

Aj,t′ 
| historyt ] − ! [ ΣT−1

t′ =t+1Ai,t′ 
Aj,t′ 

| historyt−1 ]

Cumulative future dependency of adaptive policies on one column

Probability of sampling a nearest neighbor

min probability of sampling any entry

Lipschitz  : Non-asymptotic expected squared error boundf

Bias due 
to  η

Concentration of 
neighbor distance

Effective noise 
variance
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