Counterfactual Inference in Sequential Experimental Design

Preprint: https://arxiv.org/abs/2202.06891

Sequential decision making problems

- Online education: Enhance teaching strategies for better learning
- Online advertising: Update ads / placements to increase revenue
- Mobile health: Personalized app messages to promote healthy behavior

Image credits: Susan Murphy

Mobile health trial: A simplified but representative set-up

 $Y_{i,t}^{(a)}$ = potential outcome of user i at time t under treatment $a \in \{0,1\}$

For time t = 1, 2, ..., T

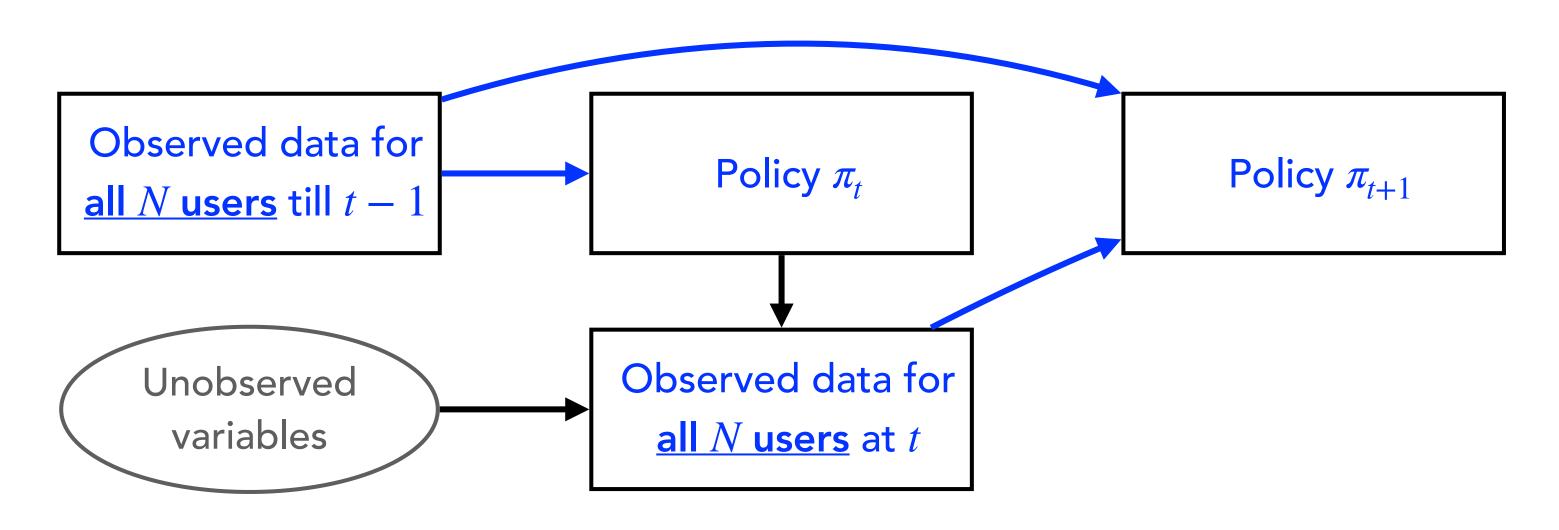
- Neyman-Rubin potential outcome framework
- No spill-over of treatment on future outcomes

For user i = 1,...,N

- 1. Randomly send a notification ($A_{i,t} = 1$) or not ($A_{i,t} = 0$) using a sampling policy $\pi_t \in [0,1]^N$ with $\pi_t(i) = \mathbb{P}(A_{i,t} = 1 \mid \text{history}_{t-1})$
- 2. Observe outcome $Z_{i,t} = Y_{i,t}^{(A_{i,t})} + \varepsilon_{i,t}$ —— noise (e.g., due to noisy measurements from sensors)

Update policy to π_{t+1} using all the data till time t

Sequential experimental design: After-study inference



- Adaptive policy to personalize to users
- Data pooled across users during study learn a good policy quickly
- After-study questions: Was the treatment effective? On average? Heterogeneity across users? ...

Our goal: Counterfactual inference, i.e., estimation of all missing potential outcomes—hard due to heterogeneity across users, time and treatments

Adaptivity and pooling of data across N users for sequential policy design makes after-study inference even more challenging

- can be used for generic after-study analyses, e.g., individual treatment effect $Y_{it}^{(1)} - Y_{it}^{(0)}$

So what do we do?

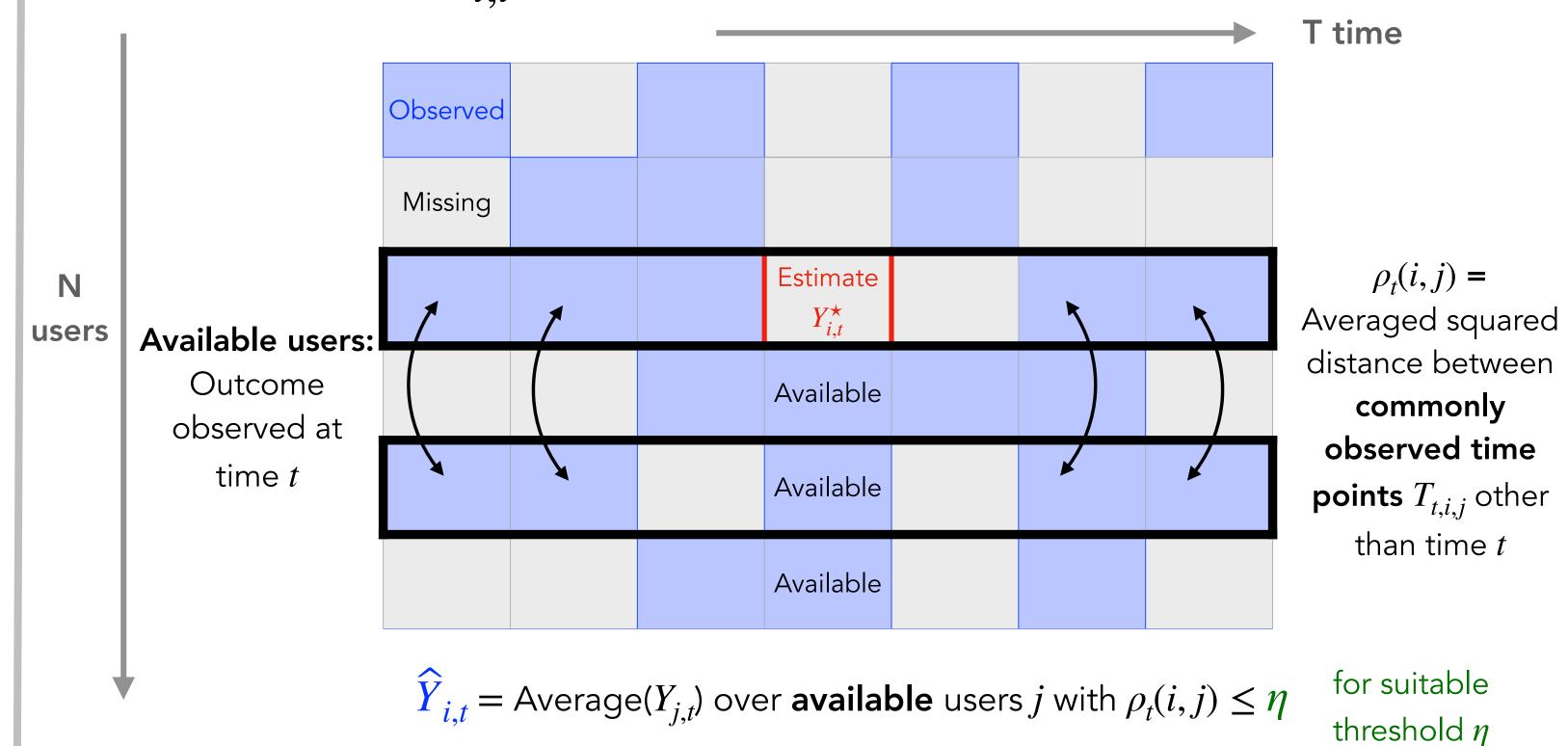
Reduce counterfactual inference to sequential matrix completion

- Fix treatment say 1, with $Y_{i,t}^{\star} \triangleq Y_{i,t}^{(1)}$
- ullet $N \times T$ matrix of potential outcomes with missing at random entries

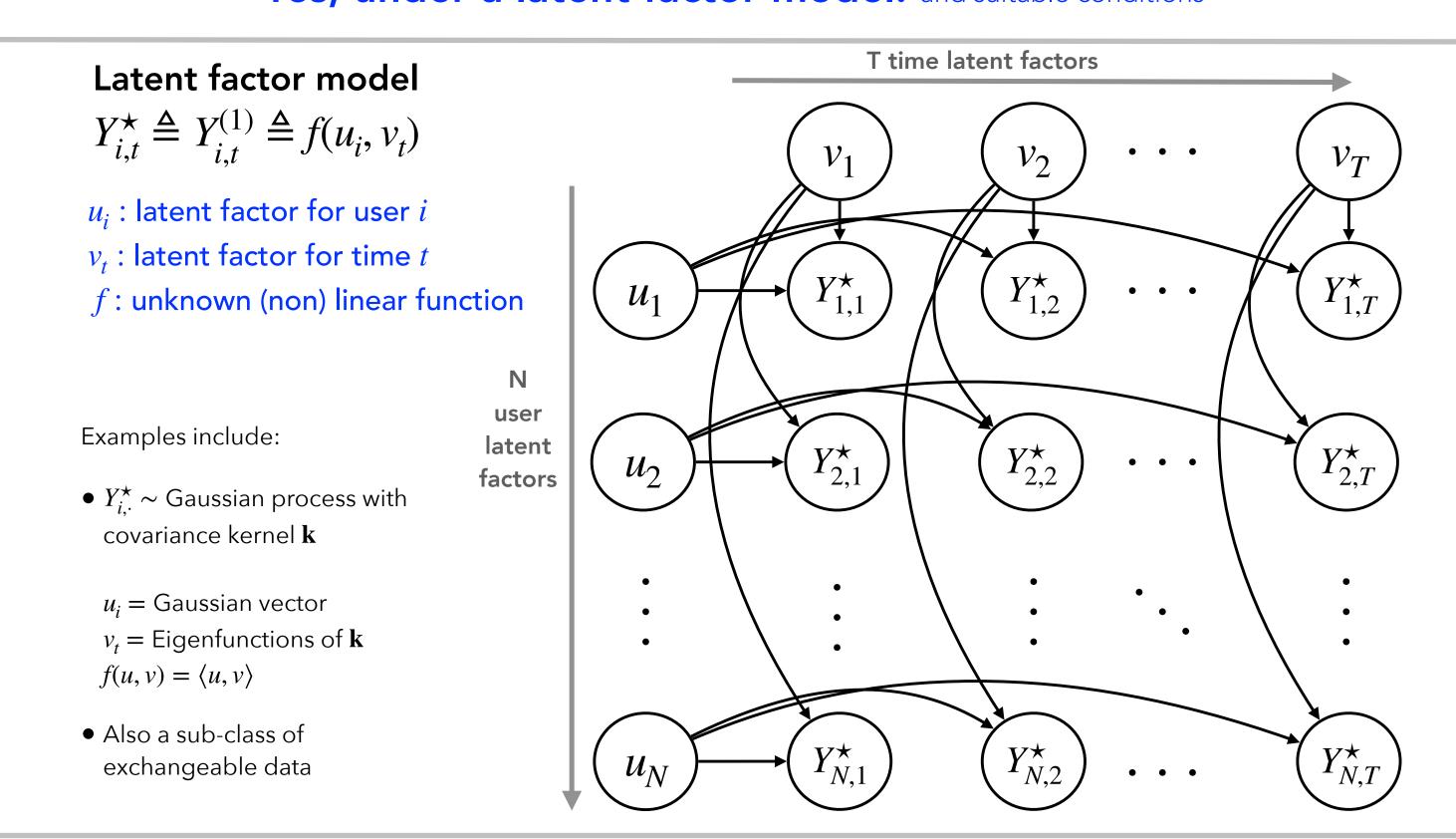
$$Z_{i,t} = \begin{cases} Y_{i,t}^{\star} + \varepsilon_{i,t} & \text{if} \quad A_{i,t} = 1\\ \text{unknown} & \text{if} \quad A_{i,t} = 0 \end{cases} \text{ where } A_{i,t} = \text{Bernoulli}(\pi_t(i))$$

• New goal: Estimate missing entries $Y_{i,t}^{\star}$ (separately for each treatment) policy can depend on observed outcomes of all treatments

Estimating $Y_{i,t}^{\star}$ via a variant of nearest neighbors



Will such a non-parametric estimate that is policy and data agnostic work for sequential experimental design? Yes, under a latent factor model! and suitable conditions



$f(u, v) = \langle u, v \rangle$: A distribution-free consistency for any (i, t)

Consider any (i, t) with enough nearest neighbors j satisfying the conditions

"diverse latent-time factors": $\frac{1}{T_{t,i,j}} \sum_{t' \in T} v_{t'} v_{t'}^{\top} \geq \lambda I_d \text{ for } \lambda > 0$

 $T_{t,i,j}$ = commonly observed time points other than t; used to compute distance $\rho_t(i,j)$

• "non-adversarial noise" across $T_{t,i,j} \cup \{t\}$: behave roughly like iid/mixing process

For suitable scaling of threshold η & mild conditions on arbitrarily dependent policy, given user i with latent factor u_i , we have

 $\widehat{Y}_{i,t} \to Y_{i,t}^{\star}$ for any t as $N, T \to \infty$

Lipschitz f: Central limit theorem for sequential estimation of $Y_{i,T}^{\star}$

Consider a **non-linear Lipschitz** f (with $||f||_{\infty} \leq D$), and suppose

- $u_i \sim_{iid} \mathbb{P}_{user}, v_t \sim_{iid} \mathbb{P}_{time}$
- $\varepsilon_{i,t} \sim_{iid} \mathbb{P}_{noise}$, $\mathbb{E}[\varepsilon_{i,t}] = 0$, $\mathbb{E}[\varepsilon_{i,t}^2] = \sigma^2$
- π_t depends on all users' history till t-1; treatments $\{A_{i,t}\}$ assigned independently given the history

Under regularity conditions, given <u>any user i at last time T</u> with <u>number of</u> neighbors N_{iT}

 $\sqrt{N_{i,T}(\hat{Y}_{i,T} - Y_{i,T}^{\star})} \Longrightarrow \mathcal{N}(0,\sigma^2)$ as $N,T \to \infty$ together at suitable rates

Lipschitz f: Non-asymptotic expected squared error bound

$$\mathbb{E}\left[(\hat{Y}_{i,T} - Y_{i,T}^{\star})^{2} | u_{i}\right] \lesssim (\eta - 2\sigma^{2}) + \frac{D^{2}(1 + \gamma_{i,T})}{p_{\min,T}^{2} \sqrt{T - 1}} + \frac{\sigma^{2}}{p_{\min,T}^{2} \Phi_{i} N}$$

Concentration of neighbor distance Effective noise variance

 $p_{\min,T} = \min_{t,j} \pi_t(j) \qquad \text{min probability of sampling any entry}$ $\Phi_i = \mathbb{P}_u \left(\mathbb{E}_v[f(u_i,v) - f(u,v)^2] \le \eta/2 - \sigma^2 \right) \qquad \text{Probability of sampling a nearest neighbor}$

 $\gamma_{i,T} = \sup_{i \neq i, t < T} \left| \mathbb{E}\left[\sum_{t'=t+1}^{T-1} A_{i,t'} A_{j,t'} \middle| \text{history}_{t} \right] - \mathbb{E}\left[\sum_{t'=t+1}^{T-1} A_{i,t'} A_{j,t'} \middle| \text{history}_{t-1} \right] \right|$

Cumulative future dependency of adaptive policies on one column