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Sequential decision making problems

® Online education: Enhance teaching strategies for better learning
® Online advertising: Update ads / placements to increase revenue

® Mobile health: Personalized app messages to promote healthy behavior

Physical activity Wearable/trackers

s - Wearable
Activity Tracking
Quantified Self
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Mobile health trial: A simplified but representative set-up

Yl.(?) = potential outcome of useri at time 7 under treatmenta € {0,1}

. - Neyman-Rubin potential outcome framework
Fortimet=1,2,....,T .
- No spill-over of treatment on future outcomes

Foruseri=1,...N

1. Randomly send a notification (A;; = 1) or not (A, , = 0) using a sampling
policy @, € [0,11V with z,(i) = P(4;, = 1| history _ )

2. Observe outcome Z , = Y,(?’?t) + &, < noise (e.g., due to noisy measurements
) l, )

from sensors)

Update policy to 7, | using all the data till time 7

Sequential experimental design: After-study inference

Observed data for

, Policy 7
all N users till 7 — 1 Y

-

Observed data for
all N users at ¢

Policy 7,

Unobserved
variables

- Adaptive policy to personalize to users

- Data pooled across users during study |earn a good policy quickly

- After-study questions: Was the treatment effective? On average?
Heterogeneity across users? ...

Our goal: Counterfactual inference, i.e., estimation of all missing
potential outcomes—hard due to heterogeneity across users,
time and treatments

Adaptivity and pooling of data across N users for sequential
policy design makes after-study inference even more challenging

- can be used for generic after-study analyses, e.g., individual treatment effect Yl.(}) — Yl.((t))

So what do we do?
Reduce counterfactual inference to sequential matrix completion

e Fix treatment say 1, with Y% 2 Yl.(i)

® N X T matrix of potential outcomes with missing at random entries
* - _
Yi+e, it A,=1

Zi, =
’ Ai,fz O

| where A; . = Bernoulli(z,(i))
unknown if ’

e New goal: Estimate missing entries Y* (separately for each treatment)
policy can depend on observed outcomes of all treatments
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Estimating Y* via a variant of nearest neighbors

T time

Q.
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Observed

Missing

pAi, J) =
Averaged squared
distance between
commonly
observed time

N

Estimate
Y*
users | Available users: -

Qutcome
observed at

than time ¢
Available
Yi,t — Average(Yj,t) over available users j with p,(i,j) <7 for suitable
threshold 7

Will such a non-parametric estimate that is policy and data
agnostic work for sequential experimental design?
Yes, under a latent factor model! and suitable conditions

T time latent factors
Latent factor model

Y, 2Y) 2 flu,v)

u; : latent factor for user i

v, : latent factor for time ¢

f : unknown (non) linear function Uq

N
user
latent
factors

Examples include:

L)
® Y* ~ Gaussian process with

covariance kernel k

u; = Gaussian vector

v, = Eigenfunctions of k

f(I/t, V) = <l/t, V>

® Also a sub-class of
exchangeable data Upn

flu,v) = (u, v): A distribution-free consistency for any (i, )

Consider any (i, ) with enough nearest neighbors j satisfying the conditions

1
, diverse latent-time factors": Z v, > Al for 1> 0
Lt t'el;
Tt,i,j = commonly observed time points other than #; used to compute distance p,(i, j)

® “non-adversarial noise” across T;; ;U {t}: behave roughly like iid/mixing process

For suitable scaling of threshold r & mild conditions on arbitrarily dependent policy,

given user i with latent factor u;, we have
Y, — Y} foranytas N, T — oo

Lipschitz f: Central limit theorem for sequential estimation of Y.

Consider a non-linear Lipschitz f (with ||f|| ., < D), and suppose
® Ui ~iig Pusers Vi ~iia Prime

® &~y P i Elgj ] =0,E[e]] = 6

noise’

® 7, depends on all users” history till r — 1; treatments{A;,} assignea
independently given the history

Under regularity conditions, given any user i at last time T with number of

neighbors N; r
A/ ( ?i,T - Y = N(0,6%) as N,T — oo together at suitable rates

Lipschitz f: Non-asymptotic expected squared error bound

D2(1 + Vi,T) o>

(n —20%) + +
P VT —1 Pmin, 7 PN

Bias due Concentration of Effective noise
toy neighbor distance variance

min probability of sampling any entry

E [( Y;r— YZ(T)2 | ui] S

Pmin,T = ntnn ﬂt(] )
J

®; = P, (E,[fu,v) - fu,v)*] < n/2 — 6°)

Probability of sampling a nearest neighbor

Y= sup ‘E[ET—I A A | history 1 — E[ZIZL A, A, | history | ]

=t+1° M f'=t+1""1
JFLILT

Cumulative future dependency of adaptive policies on one column
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