Can we do counterfactual inference in
the presence of unobserved
confounding with one sample?

with Raaz Dwivedi, Devavrat Shah, and Greg Wornell
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Sequential Recommender System
A graphical model

Z — user’s unobserved traits
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v, — user’s observed traits at time ¢
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Sequential Recommender System
Goal
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Sequential Recommender System
Challenges

* unobserved factors — spurious associations

* users could be heterogeneous

* each user — a single interaction trajectory

A A

engagement level engagement level

Simpson’s paradox



Problem Setup

unobserved covariates observed covariates

observed interventions @—»@ observed outcomes

The micro-level graphical is consistent with this macro-level graphical model

* n heterogenous and independent units

» only one observation per unit - {v®, a'?, y(i)}?:1



Goal

Counterfactual questions for these n units

For every unit i € [n], what would the potential
outcome yV(@") be whilez =z and v = v¥?

Under SUTVA, learning unit-level counterfactual distributions
is equivalent to learning unit-level conditional distributions:

py=-|la="- ,z(i),v(i)) foralli € [n]



Challenges

1. Unobserved confounding — z introduces statistical dependence between a and y
2. Heterogeneity — (z\V, v¥) could be different for different units

= we only observe one realization that is consistent with p(y = - |a,z?,v")

[s it possible to learn n heterogeneous distributions
with only one sample per distribution?



Our approach

* Model the joint distribution of w 2 (z,v,a, y) as an exponential family
p(w; P, D) exp(quw + WT(I)W)

* The conditional distribution of y given a, z, v can be written as

p(y |a9z — z(i)a V = v(i)) X GXP( l ¢}-7r +2Z(i)T(DZ,)’ T 2v(i)T(DVa)’ +2aT(I)a’y ]y +y|T(I))’vyy>

- 1
different for different units

n heterogeneous conditional distributions ===

n distributions from the same exponential family
but with parameters that vary across units



Our approach
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p(yla,z =79,y =vY) exp(l ¢, +22V' > + 20V D 420D, ]y +y CIDy,yy)
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shared parameters

— H(Z(l)), ot g(z(n)), ®

. Ifz\V = ... =z - 3 single exponential family with 7 samples

2. If n =1 — a single exponential family with one sample (assume ® is known)



Inference Tasks

1. Parameters
A. Unit-level — 0*(z) for all i € [n]
B. Population-level — ©@*

2. Expected potential outcomes — K [y(i)(d'(i)) 1z =2 v = v(i>]



Parameter estimation

0z, -+, 0E"), 0  —> —> "), -, 0"), 0

.oss function

, YA log(dim)
Forallrowj, [[©° - 0l[, <€ whenevern > O ”
L dim*Comp?
For all unit 4, [|0*&®) — 6z V)|, < max {e, Comp} Whenevern > O —

When the true parameters are s-sparse linear combination of k known vectors, Comp = 0<S log(k - dim))



Outcome estimation

Expected potential outcomes — u'¥ = E ly D@y |z =79, v = v(i)]
(v @ a)

0z, @

estimation
engine

When the true parameters are s-sparse linear combination of k known vectors, for any {@" € o/},

sp?log(k - dim) )

c4

slog(k - dim) + €

For all unit i, MSE(,M(i), A(i)) <

whenever n > O(
dim



.oss function

Conditionon z

 Recall the joint distribution of w = (z, v, a, y)

p(w; , D) exp(ngw + wT(Dw)

e Letting X = (v, a,V), the conditional distribution of X given z can be written as
g y g

p(x12;0z), ©) x exp( 0@)] x + xT@x)

T

— () 3 — 4@ T T T T
pyla,z=z2",vy =v") x exp(l ¢, +227 D, + 20D, +2a D, ]y +y CI)y,yy)
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.oss function

Assumptions

px12:0(2), ©)  exp( [0@)] "x +xTOx)

(A) Every element of 8*(z'V), -+, 0*(z"™), and ®* is bounded
(B) Every row of ® is sparse

(C) Every diagonal entry of ®* is zero

* Ay 2 {0 : @is consistent with (A) + low complexity}

+ Ag = {O© : Ois consistent with (A), (B), and (C)}



,
.oss function N

p(x12;0@2), ©) x exp( 0@)] x + xT@x)

» inspired by the conditional distribution of x, given X_,and z —

p(x|x_.2:0(2),0) exp( 0,z) + 207 x] xt)

» maps the parameters 0V, ..-. 0" and © to &

Z(0) = ! > ) exp( — [09 + 2®;rx(i)]xt(i)) where © 2 |90, ... o™, @]

n .
refdimy i€[n]



.oss function

Estimate

1 . N
2(©) =~ Z z €Xp< — [0 + 207 x ] xt(’)) where © £ [g1, ... g @|
re[dim) i€[n]

® = arg min

— @eAng@g (@)

* convex optimization problem

+ strictly proper loss function — ®* uniquely maximizes E[Z( - )]




.oss function

Decomposition

1 . N
2(©) =~ 2 z eXp< — [0 + 207 x ] xt(’)) where © £ [g1, ... g @|
re[dimj i€[n]

N

® = arg min

— @EAZXA@g(@)

min f(a, b) = min min f(a, b)
a,b a b

1. minimize w.r.t ®

2. minimize w.r.t 0, ..., g



.oss function

Learning population-level parameter

g(@) — % Z 2 eXp( _ [gt(i) 4 2@;Fx(i)]xt(i)) where © 2 [9(1), cor, g(n)’ @]

re[dim] i€(n]
Ag — (A) bounded elements, (B) sparse rows (C) zero diagonals

Ag places independent constraints on the rows of ©®

p independent convex optimization problems

1 . -
#©) ==Y exp( - [0”+20/x"]x?) forall 1 & [dim
n
1€|n]



.oss function

Learning unit-level parameter

g(@) — % Z 2 eXp( _ [gt(i) 4 2@;Fx(i)]xt(i)) where © 2 [9(1), cor, g(n)’ @]

re[dimy i€[n]

A,y — (A) bounded elements, (B) low complexity

O ... 0" Ay places independent constraints on units, i.e., ) NAgtoralli € [n]

n independent convex optimization problems

F0@N = Y exp( = [00+20 xVx?) foralls € [dim]

refdim



Can we do counterfactual inference
in the presence of unobserved
confounding with one sample?

For every user, Netflix can estimate
the expected potential outcomes
with MSE scaling as 1/dimension




Social network setting
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