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Abstract

We review the celebrated Johnson Lindenstrauss Lemma and some recent advances in
the understanding of probability measures with geometric characteristics on Rd, for large d.
These advances include the central limit theorem for convex sets, according to which the
uniform measure on a high dimensional convex body1 has marginals that are approximately
Gaussian. We try to combine these two results to provide a theoretical justification to the
successful heuristic methods implemented in Ensemble Kalman Filters for high dimensional
data by oceanographars, meteorologists, etc.

1A convex body in Rd is a compact, convex set with a non-empty interior.
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1. Introduction

1.1 Motivation

The Ensemble Kalman Filter is a Monte-Carlo implementation of the Bayesian Update. It
uses ensemble mean and ensemble covariance for representing the distribution of the system
state, but it assumes that all the involved probability distribution functions are Gaussian.
Nevertheless, such ensemble methods have proven to work very well for high-dimensional
data, even when the pdfs involved are not necessarily Gaussian. We use the recent advances
in probability measures which imply that random projections on low dimensional subspaces
are approximately gaussian, and a variant of the Johnson-Lindenstrauss Lemma (JL Lemma)
which shows that for a set there exist norm preserving low-dimensional projections (with
ε-distortion). We combine these two results to provide a theoretical support behind the
success of the Ensemble Kalman Filter in the absence of Gaussianity.

1.2 Outline

The report has been organized into Six Sections. In next section, we look at the Kalman
Filter and the Ensemble Kalman Filter (EnKF). We describe the mathematical model of
these filters. And then we give details of a particular example from oceanography where
Ensemble Kalman Filter is used. In Section 3, we discuss the Johnson-Lindenstrauss Lemma
and mention several variants that appeal to the wide-applicability of the lemma. In the next
section, results on Gaussian projections of high dimensional distributions are made precise
followed by discussion of the strong variant of the JL Lemma. We combine these results in
Section 5 to provide a mathematical justification behind the heuristics associated with the
EnKF. Finally we conclude in Section 6 and outline a possible future line of work.
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2. Ensemble Kalman Filter

In this chapter, we study in detail the working of a Ensemble Kalman Filter (EnKF).
First we describe a Kalman Filter, followed by an overview of EnKF. After that we present
the mathematical model of Kalman Filter (KF), Extended Kalman Filter (XKF) and the
EnKF. After that we make a few remarks about the EnKF. Most of the content in the next
two sections is a summary of [8] and [9].

2.1 Introduction

In the Ensemble Kalman Filter, given a probability density function (pdf) of the state of the
modeled system (the prior, called often the forecast in geosciences) and the data likelihood,
the Bayes theorem is used to to obtain pdf after the data likelihood has beed taken into
account (the posterior, often called the analysis). This is called a Bayesian update. The
Bayesian update is combined with advancing the model in time, incorporating new data from
time to time. The original Kalman Filter [11] assumes that all pdfs are Gaussian (the
Gaussian assumption) and provides algebraic formulas for the change of the mean and
covariance by the Bayesian update, as well as a formula for advancing the covariance matrix
in time provided the system is linear. However, maintaining the covariance matrix is not
feasible computationally for high-dimensional systems. For this reason, EnKFs were
developed [12,13]. EnKFs represent the distribution of the system state using a random
sample, called an ensemble, and replace the covariance matrix by the sample covariance
computed from the ensemble. One advantage of EnKFs is that advancing the pdf in time is
achieved by simply advancing each member of the ensemble. For a survey of EnKF and
related data assimilation techniques, see [10].

2.1.1 Kalman Filter

Let us review first the Kalman Filter. Let x denote the n-dimensional state vector of a
model, and assume that it has Gaussian probability distribution with mean µ and covariance
Q, i.e., its pdf is (∝ denotes proportionality)

p(x) ∝ exp

(
−1

2
(x− µ)tQ−1(x− µ)

)
. (2.1)
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This probability distribution, called the prior, was evolved in time by running the model and
is to be updated to account for the new data. We assume that data has some associated
error with it and the distribution of error is known. Here, the data d is assumed to be
Gaussian with covariance R and mean Hx, where H is the so-called observation matrix.
Naturally, Hx denotes the value of the data if the data was “error-free”. Thus, the
conditional density of d given x (known as data-likelihood) is given as

p(d|x) ∝ exp

(
−1

2
(d−Hx)tR−1(d−Hx)

)
. (2.2)

The pdf of the state and the data-likelihood are combined to give the new probability density
of the system state x conditional on the value of the data d (the posterior) by the Bayes
Theorem,

p(x|d) ∝ p(d|x)p(x). (2.3)

The data d is fixed once it is received, so denote the posterior state by x̂ instead of x|d and
the posterior pdf by p(x̂). It can be shown by algebraic manipulations [14] that the posterior
pdf is also Gaussian,

p(x̂) ∝ exp

(
−1

2
(x̂− µ̂)tQ̂−1(x̂− µ̂)

)
, (2.4)

with the posterior mean µ̂ and covariance Q̂ given by the Kalman update formulas

µ̂ = µ+K(d−Hµ), Q̂ = (I −KH)Q, (2.5)

where
K = QH t(HQH t +R)−1 (2.6)

is the so-called Kalman Gain Matrix.

2.1.2 Ensemble Kalman Filter (EnKF)

The EnKF is a Monte Carlo approximation of the Kalman Filter, which avoids evolving the
covariance matrix of the pdf of the state vector x. Instead, the distribution is represented by
a collection of realizations, called an ensemble. So, let

X = [x1, · · · , xN ] = [xi] (2.7)

be an n×N matrix whose columns are a sample from the prior distribution. The matrix X
is called the prior ensemble. Replicate the data into an m×N matrix

D = [d1, · · · , dN ] = [di] (2.8)
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so that each column di consists of the data vector d plus a random vector from the
n-dimensional normal distribution N (0, R). Then the columns of

X̂ = X +K(D −HX) (2.9)

form a random sample from the posterior distribution. The EnKF is now obtained simply by
replacing the state covariance Q in Kalman Gain Matrix (2.5) by the sample covariance C
computed from the ensemble members (called the ensemble covariance).

2.2 Mathematical Models

Consider a discrete-time nonlinear system with dynamics

xk+1 = f(xk, uk) + wk (2.10)

and measurements
yk = h(xk) + vk, (2.11)

where xk, wk ∈ Rn; uk ∈ Rm; yk, vk ∈ Rp. We assume that wk and vk are stationary
zero-mean white noise processes with covariance matrices Qk and Rk, respectively.
Furthermore we assume that x0, wk and vk are uncorrelated.The objective is to obtain
estimates xak of the state xk using measurements yk so that tr (E [eak(e

a
k)
t]) is minimized,

where eak ∈ Rn denotes the error, and is defined by

eak := xk − xak. (2.12)

2.2.1 Kalman Filter

When the dynamics and measurement in (2.10) and (2.11) are linear, that is,

f(xk, uk) = Akxk +Bkuk, (2.13)

h(xk) = Ckxk (2.14)

the Kalman Filter provides optimal estimates xak of the state xk. Define the analysis state
error covariance P a

k ∈ Rn×n by P a
k := E [eak(e

a
k)
t]. The Kalman Filter equations [11] are

expressed in two steps, the Analysis Step, where information from measurements is used,
and the Forecast Step, where information about the plant is used. These steps are

4



expressed as the analysis step:

Kk = P f
xyk

(
P f
yyk

)−1
, (2.15)

P a
k = (I −KkCk)P

f
k , (2.16)

xak = xfk +Kk(yk − Ckxfk), [Data Update] (2.17)

and the forecast step:

xfk+1 = Akx
a
k +Bkuk, [Physics Update] (2.18)

P f
k+1 = AkP

a
kA

t
k +Qk, (2.19)

where the forecast state error covariance P f
k ∈ Rn×n is defined by P f

k := E
[
efk

(
efk

)t]
, and

P f
xyk

:= E
[
efk

(
yk − yfk

)t]
= P f

k C
t
k, (2.20)

P f
yyk

:= E
[
(yk − yfk )

(
yk − yfk

)t]
= CkP

f
k C

t
k +Rk, (2.21)

where yfk := Ckx
f
k and efk := xk − xfk .

However when the dyanmics in (2.10) and (2.11) are non-linear, the discrete-time Riccati
update equation (2.19) cannot be used to propogate the state error covariance matrix.
Hence, some approximate techniques like Extended Kalman Filter (XKF) are used in which
Physics update is modified as xfk+1 = f(xak, uk) and for other equations, Ak and Ck are
approximated as Jacobians of f(x, u) and h(x) at current state estimate, respectively. That
is

Ak :=
∂f(x, u)

∂x

∣∣∣∣
x=xak

(2.22)

Ck :=
dh

dx

∣∣∣∣
x=xak

(2.23)

2.2.2 Ensemble Kalman Filter

The EnKF is a suboptimal estimator, where the error statistics are predicted by using a
Monte Carlo or ensemble integration to solve the Fokker-Planck equation. The Ensemble
Kalman Filtering method is presented in three stages.
First, to represent the error statistics in the forecast step, we assume that at time k, we have
an ensemble of q forecasted state estimates with random sample errors. We denote this
ensemble as Xf

k ∈ Rn×q, where

Xf
k := (xf1k , · · · , x

fq
k ), (2.24)
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and the superscript fi refers to the i-th forecast ensemble member. Then, the ensemble
mean x̄fk ∈ Rn is defined by

x̄fk :=
1

q

q∑
i=1

xfik . (2.25)

Similarly, we have yfik ’s and we define their ensemble mean as ȳfk . Since the true state xk is
not known, we approximate efk = xk − xfk by using the ensemble members. The ensemble
error matrix Ef

k ∈ Rn×q around the ensemble mean is defined as

Ef
k :=

[
xf1k − x̄

f
k , · · · , x

fq
k − x̄

f
k

]
(2.26)

and the ensemble of output errors Ef
yk
∈ Rp×q is defined as

Ea
yk

:=
[
yf1k − ȳ

f
k , · · · , y

fq
k − ȳ

f
k

]
. (2.27)

And P f
k , P

f
xyk

and P f
yyk

are approximated by P̂ f
k , P̂

f
xyk

and P̂ f
yyk

respectively where,

P̂ f
k :=

1

q − 1
Ef
k (Ef

k )t, P̂ f
xyk

:=
1

q − 1
Ef
k (Ef

yk
)t, and P̂ f

yyk
:=

1

q − 1
Ef
yk

(Ef
yk

)t. (2.28)

Thus, we interpret the forecast ensemble mean as the best forecast estimate of the state,
and the spread of the ensemble members around the mean as the error between the best
estimate and the actual state.
The second step is the analysis step: To obtain the analysis estimates of the state, the EnKF
performs an ensemble of parallel data assimilation cycles, where for i = 1, · · · , q

xaik = xfik + K̂k

(
yik − h(xfik )

)
. (2.29)

The perturbed observations yik are given by

yik = yk + vik, (2.30)

where vik is distributed as N (0, Rk). The sample error covariance computed from vik
converges to Rk as q →∞. We approximate the analysis error covariance matrix P a

k by P̂ a
k ,

where
P̂ a
k :=

1

q − 1
Ea
k(Ea

k)t, (2.31)

and Ea
k is defined by (2.26) with xfik replaced by xaik and x̄fk replaced by the ensemble mean

of xaik . We use the classical Kalman filter gain expression and the approximations of the error
covariances to determine the filter gain K̂ by

K̂ = P̂ f
xyk

(P̂ f
yyk

)−1. (2.32)
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The last step is the prediction of error statistics of error statistics in the forecast step:

xfik+1 = f(xaik , uk) + wik, (2.33)

where the values wik are sampled from N (0, Qk). The sample error covariance matrix
computed from the wik converges to Qk as q →∞. Finally, we summarize the analysis and
forecast steps.
Analysis Step:

K̂k = P̂ f
xyk

(P̂ f
yyk

)−1, (2.34)

xaik = xfik + K̂k

(
yk + vik − h(xfik )

)
(2.35)

x̄ak =

q∑
i=1

xaik /q. (2.36)

Forecast Step:

xfik+1 = f(xaik , wk) + wik, (2.37)

x̄fk =

q∑
i=1

xfik /q, ȳfk =

q∑
i=1

yfik /q, (2.38)

Ef
k =

[
xf1k − x̄

f
k , · · · , x

fq
k − x̄

f
k

]
(2.39)

Ef
yk

=
[
yf1k − ȳ

f
k , · · · , y

fq
k − ȳ

f
k

]
(2.40)

P̂ f
xyk

=
1

q − 1
Ef
k (Ef

yk
)t (2.41)

P̂ f
yyk

=
1

q − 1
Ef
yk

(Ef
yk

)t. (2.42)

[26] gives a beautiful pictorial view of all the steps. Unlike the XKF, the evaluation of the
filter gain K̂k in the EnKF does not involve an approximation of the nonlinearity f(x, u) and
h(x). Hence, the computational burden of evaluating the Jacobians is absent in the EnKF.
Furthermore, evaluation of P̂ f

xyk
∈ Rn×p and P̂ f

yyk
∈ Rp×p is a O(pqn) operation. While

evaluation of P f
k is an O(n3) operation in XKF. Hence, if q � n then the computational

burden of evaluating the approximate covariances in the EnKF is less when compared to
XKF. However, in EnKF q parallel copies of the model have to be simulated, and, when q is
large, the computational burden of the forecast step in the EnKF is large. Alternatively, in
the XKF , only one copy of the model is simulated to obtain the state estimates. Hence, if
n is very large and q � n, then the EnKF is computationally less intensive than the XKF.
Usually, q is of the order of a few hundreds and n is of the order of a few millions and so we
have q � n.
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2.3 A Closer Look at EnKF

To summarize, the ensemble Kalman filter is a recursive filter suitable for problems with a
large number of variables, such as discretizations of partial differential equations in
geophysical models. The EnKF originated as a version of the Kalman filter for large problems
(essentially, the covariance matrix is replaced by the sample covariance), and it is now an
important data assimilation component of ensemble forecasting. EnKF is related to the
particle filter (in this context, a particle is the same thing as an ensemble member) but the
EnKF makes the assumption that all probability distributions involved are “Gaussian” .
In the limit of ensemble size becoming infinite, the KF and the EnKF are equivalent. For
nonlinear dynamics the EnKF includes the full effect of the non-linear terms and there are no
linearizations or closure assumptions used. In addition, there is no need for a tangent linear
operator or its adjoint, and this makes the method very easy to implement for practical
applications. This leads to an interpretation of the EnKF as a purely statistical Monte Carlo
method where the ensemble of model states evolves in state space with the mean as the best
estimate and the spreading of the ensemble as the error variance. At measurement times
each observation is represented by another ensemble, where the mean is the actual
measurement and the variance of the ensemble represents the measurement errors. Thus, we
combine a stochastic prediction step with a stochastic analysis step. A few important
observations are listed below:

1. The ensemble methods introduce an approximation by using only the mean and
covariance of the prior joint pdf when computing the posterior ensemble update
equation. Thus, it is effectively assumed that the prior joint pdf is Gaussian when
computing the updates. This means that the EnKF will not give the correct answer if
the prior joint pdf has non-Gaussian contributions. However the ensemble methods
have proven to work well with a large number of different nonlinear dynamical models.

Thus the EnKF analysis scheme is approximate in the sense that it does not properly
take into account non-Gaussian contributions in the prior for x, the state of the
system. In other words, it does not solve the Bayesian update equation for
non-Gaussian pdfs. On the other hand, it is not a pure resampling of a Gaussian
posterior distribution. Only the updates are linear and these are added to the prior
non-Gaussian ensemble. Thus, the updated ensemble will inherit many of the
non-Gaussian properties from the forecast ensemble. In summary, we have a very
computational efficient analysis scheme where we avoid traditional resampling of the
posterior, and the solution becomes something between a linear Gaussian update and a
full Bayesian computation. It was also suggested that the sequential introduction of
measurements, with Gaussian distributed errors, actually introduced “Gaussianity” to
the ensemble representing the conditional joint density.

2. It is now known that EnKF can handle certain levels of nonlinearity in both the model
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prediction and measurement functional. Even if the prior ensemble is non-Gaussian the
ensemble methods will in many cases provide an updated ensemble having a realistic
pdf. When the prior ensemble is non-Gaussian, the analyzed ensemble will inherit some
of the non-Gaussian structures. On the other hand, it is also possible to make the
EnKF fail completely; e.g., if the weight on the prior is low and a multimodal pdf
develops, this may result in non-physical solutions.

3. It is seen that the residuals, as expected, are decreasing when the ensemble size is
increased. In practical applications we are naturally limited by the number of ensemble
members we can afford to run. However, from the central limit theorem, the accuracy
in the EnKF estimate will improve proportionally to the square root of the ensemble
size. In most published applications of the EnKF a typical ensemble size is around 100
members. This ensemble size is clearly much less than effective dimension of the
solution space of many dynamical models, but in many cases a so-called localization or
local analysis computation is often used to effectively increase the dimension of the
space where the solution is searched for. We provide an overview of a practical
example from [10].

• The TOPAZ system consists of the HYCOM ocean model which has been
coupled to two different sea-ice models, one is a simple model for ice-thickness
and ice-concentration while the other is multi-category sea-ice model which
represents ice-thickness distributions. Further, four ecosystem models of
increasing complexity have been integrated in the system. The TOPAZ system
has a huge state vector consisting of 79.6 million variables just for the physical
ocean parameters. The inclusion of the marine ecosystem multiplies the number
of unknowns by a factor 2 to 3, depending on the ecosystem model formulation
used.

• The system uses 100 members in the ensemble, thus the computational cost of
running the system is 100 times the cost of running a single model. Clearly, it is a
challenge to represent the solution search space for such a large state vector while
assimilating huge number of measurements using only a limited ensemble size. To
avoid the problems associated with a large number of measurements, many
operational assimilation schemes have made the assumption that only
measurements located within a certain distance from a grid point will impact the
analysis in this grid point. This allows for an algorithm where the analysis is
computed grid point by grid point and only a subset of observations, located near
the current grid point, is then used in the analysis.

• The analysis in the EnKF is computed in a space spanned by the ensemble
members. This is a subspace which, in many cases, can be rather small compared
to the total dimension of the model state. Computing the analysis grid point by

9



grid point implies that, for each grid point, a small model state is solved for in a
relatively large ensemble space. The analysis will then result from a different
combination of ensemble members for each grid point, and this allows the
analysis scheme to reach solutions not originally represented by the ensemble.
This algorithm is approximate and it does not solve the original problem posed.
The local analysis is spatially discontinuous and the updated ensemble members
may not represent solutions of the original model equations, but the deviation
should not be too large as long as the range of influence is large enough. In
addition the updated ensemble members are not represented in the space spanned
by the predicted ensemble. In fact, the use of an update matrix which varies
smoothly throughout the grid effectively reduces the dimension of the problem.
That is, in an ocean model where we update the solution grid column by grid
column, we are solving many small problems instead of one large. On the other
hand, in the standard EnKF analysis we also introduce an approximation by using
a limited ensemble size. With an infinite ensemble size there would be no need to
use a local analysis scheme, since the whole solution space would be represented
by the ensemble. The local analysis scheme will in many applications significantly
reduce the impact of a limited ensemble size and allow for the use of the EnKF
with high dimensional model systems

• The quality of the EnKF analysis is clearly connected to the ensemble size used.
We expect that a larger ensemble is needed for the global analysis than the local
analysis to achieve the same quality of the result. That is, in the global analysis a
large ensemble is needed to properly explore the state space and to provide a
consistent result for the global analysis. We expect this to be application
dependent. In dynamical models with large state spaces, the local analysis allows
for the computation of a realistic analysis result while still using a relatively small
ensemble of model states.
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3. Johnson-Lindenstrauss Lemma

3.1 Introduction

3.1.1 Dimensionality Reduction

Advancement in data collection and storage capabilities have enabled researchers in diverse
domain to observe and collect huge amounts of data. These large data sets, however,
present substantial challenges to existing data analysis tools. One major bottleneck in this
regard is the large number of features or dimensions associated with some measured
quantity, a problem frequently termed as the “curse of dimensionality”. Existing algorithms
usually scale very poorly with increase in number of dimensions of the data. This motivates
mapping the data from the high-dimensional space to a lower dimensional space in a manner
such that the mapping preserves (or almost preserves) the structure of the data. Substantial
research efforts have been made (and are still being made) to overcome the aforementioned
curse and tame high-dimensional data. Dimensionality reduction encompasses all such
techniques which aim to reduce the number of random variables (dimensions or features)
associated with some observable or measurable quantity with the hope that the data in lower
dimensions would be much more amenable to efficient exploration and analysis.

3.1.2 The Johnson-Lindenstrauss Lemma

In the process of extending Lipschitz mappings to Hilbert spaces, Johnson and
Lindenstrauss [15] formulated a key geometric lemma. This lemma (Lemma 1 of [15]) was
thereafter referred to as Johnson-Lindenstrauss Lemma. The Johnson-Lindenstrauss Lemma
states that a set of points in high-dimensional space can be mapped to a much lower
dimension such that the pairwise distances of the points in the higher dimensional space are
almost preserved. The cardinality of the lower dimension space depends on the number of
input points and degree (approximation factor) to which the pairwise distances need to be
preserved.
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3.1.3 Applications

The lemma has uses in compressed sensing, manifold learning, dimensionality reduction, and
graph embedding. Much of the data stored and manipulated on computers, including text
and images, can be represented as points in a high-dimensional space. However, the essential
algorithms for working with such data tend to get bogged down very quickly as dimension
increases. It is therefore desirable to reduce the dimensionality of the data in a way that
preserves its relevant structure. The Johnson-Lindenstrauss lemma is a classic result in this
vein.

3.2 Random Projections

We first state JL Lemma formally and then discuss briefly about bounds of the dimension of
subspace containing the ε-distortion embedding. We outline the key proof technique that is
used in proving most of the results in various variants of JL Lemma. And then we state some
variants and relaxation of the lemma.

3.2.1 Elementary Versions

The lemma as stated in [15] (throughout the paper, unless otherwise mentioned, ||.||
denotes the `2 norm):

Theorem 3.2.1 (JL Lemma). For any 0 < ε < 1 and any integer n, let k be a positive integer
such that

k > 8
lnn

ε2
. (3.1)

Then for any set V of n points in Rd, there is a map f : Rd → Rk such that for all u, v ∈ V,

(1− ε)||u− v||2 6 ||f(u)− f(v)||2 6 (1 + ε)||u+ v)||2. (3.2)

The bounds on k were improved later on, for instance, the statement of the theorem as given
in [17]:

Theorem 3.2.2. For any 0 < ε < 1 and any integer n, let k be a positive integer such that

k >
4 lnn

(ε2/2− ε3/3)
. (3.3)

Then for any set V of n points in Rd, there is a map f : Rd → Rk such that for all u, v ∈ V,

(1− ε)||u− v||2 6 ||f(u)− f(v)||2 6 (1 + ε)||u− v||2. (3.4)

Moreover, this map can be found in randomized polynomial time.

12



Frankl and Maehara in [18] had shown that dimension k = d9 lnn/(ε2 − 2ε3/3)e+ 1 is
sufficient; the papers of Indyk and Motwani [21] and Achlioptas [19] give essentially the same
bounds for k as in (3.3). Before proceeding further, we state the following result Alon in
by [24]:

Theorem 3.2.3. For any ε > 0, any set of A of n points in an Euclidean Space can be
embedded in an Euclidean Space of dimension k = c(ε) log n with distortion ε and
c(ε) 6 O(1/ε2). Then

c(ε) > Ω

 1

ε2 log
1

ε

 . (3.5)

Thus one sees that the k = O
(

logn
ε2

)
is nearly a tight bound on k. The proof involves fairly

simple concepts of linear algebra.

3.2.2 Key Proof Technique

All known proofs of the lemma proceed according to the following scheme: for given d and
an appropriate k, one defines a suitable probability distribution F on the set of all linear
maps Rd → Rk. Then one proves the following lemma:

Lemma 3.2.4. If T : Rd → Rk is a random linear mapping drawn from the distribution F ,
then for every vector x ∈ Rd we have

P
{

(1− ε)||x|| 6 ||T (x)|| 6 (1 + ε)||x||
}

> 1− 1

n2
. (3.6)

Having established this statement for F , the lemma follows easily:
Let V = {v1, ..., vn} ⊂ Rd. We choose T at random according to F . Then for every i < j,
using linearity of T and Theorem 3.1 with x = vi − vj, we get that T fails to satisfy
(1− ε)||vi − vj|| 6 ||T (vi)− T (vj)|| 6 (1 + ε)||vi − vj|| with probability atmost 1/n2.
Consequently the probability that any of the

(
n
2

)
pairwise distances is distorted by more than

1± ε is at most
(
n
2

)
/n2 < 1/2. Therefore a random T works with probability at least 1/2.

Repeating this projection O(n) times can boost the success probability to the desired
constant, giving us the claimed randomized polynomial time algorithm.

3.2.3 Variants of JL Lemma

From application point of view, it is important to be able to generate and evaluate the
random linear map T fast. Now we state some different ways in which T can be generated.

13



• In the original paper by Johnson and Lindenstrauss [15], T is chosen as the orthogonal
projection on a random k-dimensional subspace of Rd with a scaling factor of

√
d/k.

Using the idea that the projection on random k-dimensional subspace is same as
projection of a random vector on first k-coordinates, the proof in this case boils down
to showing that if x is a random point on the unit sphere Sd−1 in Rd, then the length
of its orthogonal projection on the first k co-ordinates (or in other words the quantity√
x2

1 + x2
2 + ...+ x2

k) is sharply concentrated around
√
k/d. This is a simple

consequence of measure concentration on Sd−1, see, e.g., [23] for a detailed
presentation of such a proof.

• In [21], Indyk and Motwani use a matrix T where the entries of T are i.i.d. random
variables distributed as N (0, 1). Such an T is easier to generate. By simple properties
of the normal distribution it follows that in this case, for every fixed unit vector x ∈ Rd,
the quantity ||T (x)||2 has the chi-square distribution with k degrees of freedom, and
one can use known tail estimates for this distribution to prove Theorem 3.1.

• Achlioptas in [19], uses a database friendly projection T , by giving an even more
tractable way of generating Tij. He proved that Tij can be chosen as independent ±1

random variables taking either value with same probability. In another variant, he
proved the lemma for Tij taking values ±

√
3 with probability 1/6 each and 0 with

probability 2/3. This setting allows for computing T (x) about 3 times faster than the
former, since T is sparse - only about one third entries are non-zero.

• In [16], Matousek generalizes the result to random variables with subgaussian tails1.
He proved that for an integer n, ε ∈ (0, 1/2], δ ∈ (0, 1], k = Cε−2 log 2

δ
and

T (x)i =
1√
k

n∑
j=1

Rijxj, i = 1, 2, ..., k (3.7)

where Rij are independent random variables with zero mean and unit variance and a
uniform subgaussian tail2 (and C depends on the constant in the subgaussian tail), we
have for every x ∈ Rn

P
{

(1− ε)||x|| 6 ||T (x)|| 6 (1 + ε)||x||
}

> 1− δ. (3.8)

3.2.4 Variants involving Sparse Projections

To fasten the evaluation of the map Tx, we need the associated matrix to be sparse. Now
we take a look at the results which involve sparse T . A significant obstacle for a sparse

1A random variable X is said to have a subgaussian tail if there exists a constant a > 0 such that for all
c > 0, P[X > c] 6 e−ac2 and P[X < −c] 6 e−ac2 .

2A sequence of random variables X1, X2, .., Xn are said to have a uniform subgaussian tail if all of them
have subgaussian tails with the same constant a.
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matrix T is that once T becomes significantly sparse with the fraction of nonzero entries
tending to 0, the length of the image ||T (x)|| is not sufficiently concentrated for some
vectors, for example, for x = [1, 0, 0, ..., 0]T . In [20], it was proved that the concentration is
sufficient even for sparse T provided that the vector x is “well-spread”, which can be
quantified as follows: Assuming ||x|| = 1, we require that ||x||∞ = maxj|xj| be close to
1/
√
d . This means that the mass of x has to be distributed over many components. These

authors were, however, successful in dealing with vectors x that are not well-spread by
introducing the Fourier transform. Another variant with the constraint in place was proved
by Matousek in [16].

• Ailon and Chazelle in [20] use a central concept from harmonic analysis known as the
Heisenberg principle: A signal and its spectrum cannot be both concentrated. With
this in mind, they precondition the random projection with a Fourier transform (via an
FFT) in order to isometrically enlarge the support of any sparse vector. To prevent the
inverse effect, i.e., the sparsification of dense vectors, they randomize the Fourier
transform. The result is the Fast-Johnson-Lindenstrauss-Transform: a randomized FFT
followed by a sparse projection. The FJLT shares the low-distortion characteristics of a
random projection but with a lower complexity. The overall linear map is a
combination of three matrices given by Φ = PHD where P is k × d matrix with a
large number of entries as 0 and the rest of them being distributed as normal (more
precisely, Pij ∼ N (0, q−1) with probability q, and Pij = 0 with probability 1− q, where
q can be taken as log2 n/d). H is d× d normalized Hadamard matrix3(deterministic)
which calculates the Walsh Fourier Transform (WFT), and D is d× d diagonal matrix
with diagonal entries drawn randomly from {1,−1} with probability 1/2, and this D
does the job of randomizing the WFT.

• In [16], Matousek proved (3.8) for a linear map given by equation (3.7) with the
constraint that x must be “well-spread”, that is the result holds for ||x||∞ 6 α where
α > 1/

√
d. Rij are independent random variables taking values 0 with probability

1− q and ±1/
√
q with probability q/2 each where q = C0α

2 log(d/εδ). Thus
q = O(log d/d) is small for α = 1/

√
d. The proof relied on showing that the T (x)i

had subgaussian tails for the “well-spread” vectors.

3Hadamard Matrix, denoted by Hd ∈ Rd×d where d is a power of 2, is a matrix with entries as ±1 and it

is usually expressed in a recursive way with H0 = 1 and H2k =

(
H2k−1 H2k−1

H2k−1 −H2k−1

)
.
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4. Random Low Dimensional Projections

A general study of probability distributions in high dimension is likely to be hopeless, as such
distributions may exhibit a wide range of entirely unrelated phenomena. There seem to exist,
nevertheless, some large classes of distributions which obey some interesting, non-trivial
principles. One of the earliest such examples is provided by the classical Central Limit
Theorem. Suppose we are given a probability density f : Rn → [0, 1) which is a product
density, i.e.,

f(x1, x2, ..., xn) =
n∏
i=1

fi(xi) (4.1)

for some density functions f1, ..., fn. Then f is the joint density of n independent random
variables X1, ..., Xn. Assume that the dimension n is large. Then under mild integrability
assumptions on the f ′is, it is guaranteed that for appropriate coefficients b, θn1 , θ

n
2 , ..., θ

n
n we

have

P

(
n∑
i=1

θiXi 6 t

)
≈
∫ t

−∞
exp

(
−(s− b)2/2

)
ds, ∀t ∈ R (4.2)

When the density f is properly normalized (such that X1, ..., Xn have mean zero and
variance one), the gaussian approximation (4.2) actually holds for “most” choices of
θn1 , θ

n
2 , ..., θ

n
n ∈ R with

∑n
i=1(θni )2 = 1. By “most” we mean that the coefficients θn1 , θ

n
2 , ..., θ

n
n

may be chosen randomly, uniformly on the unit sphere Sn−1 in Rn. As we shall later see, this
has been generalized to a great extent.
In the next two sections, we discuss two key aspects of low dimensional projections of
random distributions in high dimensions. First one is on random distributions with convexity
assumption. It is observed that random distributions in high dimension have Gaussian
marginals when projected to low dimensional subspaces, a generalisation of (4.2). Another
result is a strong variant of the JL Lemma (Theorem 3.2.1) which says that for a given
metric space, suitable random projections “almost” preserve the norm of the points. All the
results are easy to understand but the proofs require heavy machinery and as a consequence
have been skipped.
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4.1 Low Dimensional Projections with Gaussian Densities

In this section, we mention several results by Klartag ( [1], [2], [3], [4]; overview in [5]) which
state that uniform measure on high dimensional convex body has Gaussian marginals. We
also state some intermediate results to show that these results are indeed strong.

A function f : Rn → [0,∞) is log-concave if ∀x, y ∈ Rn and 0 < λ < 1,

f (λx+ (1− λ)y) > f(x)λf(y)1−λ (4.3)

That is, f is log-concave when log f is concave on the support of f . Examples of interest for
log-concave functions include characteristic functions of convex sets, the Gaussian density,
and several densities from statistical mechanics. In this section, random vectors in Rn that
are distributed according to a log-concave density, are considered. And so, it also includes as
a special case the uniform distribution on an arbitrary compact, convex set with a non-empty
interior.
We say that f : Rn → [0,∞) is isotropic if it is the density function of some random variable
with zero mean and identity covariance matrix. That is, f is isotropic when∫

Rn

f(x)dx = 1,

∫
Rn

xf(x)dx = 0 and
∫
Rn

〈x, θ〉2 f(x)dx = |θ|2, ∀θ ∈ Rn. (4.4)

Any log concave function with 0 <
∫
f <∞ can be brought to an isotropic position via an

affine map, that is, f ◦ T is isotropic for some affine map T : Rn → Rn (see, e.g., [6]).
We denote the standard Euclidean norm on Rn by ||.||, and for x ∈ R, |x| denotes its
magnitude.
We begin with one of the main results as given in [2]:

Result 4.1.1. There exists a sequence εn ↘ 0 for which the following holds. Let K ⊂ Rn be a
compact, convex set with a non-empty interior. Let X be a random vector that is distributed
uniformly in K. Then there exist a unit vector θ in Rn, t0 ∈ R and σ > 0 such that

sup
A⊂R

∣∣∣∣P {〈X, θ〉 ∈ A} − ∫
A

1√
2πσ2

exp

(
−(t− t0)2

2σ2

)
dt

∣∣∣∣ 6 εn (4.5)

where the supremum runs over all measurable sets A ⊂ R, and where <,> denotes the usual
scalar product in Rn.

Furthermore, under the additional assumptions that the expectation of X is zero and that
the covariance matrix of X is the identity matrix, we may assert that most (in a sense to be
made precise later) unit vectors θ satisfy (4.5), with t0 = 0 and σ = 1. Corresponding
principles also hold for multidimensional marginal distributions of convex sets. The following
lemma played an important role in proving Result 4.1.1:
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Lemma 4.1.2. Let n > 1 be an integer and let X be a random vector with an isotropic,
log-concave density in Rn. Then for all 0 6 ε 6 1,

P
{∣∣∣∣ ||X||√n − 1

∣∣∣∣ > ε

}
6 Cn−cε

2

, (4.6)

where c, C > 0 are universal constants.

It was later improved in [3] by replacing RHS of (4.6) by C exp (−cε3.33n0.33). Consequently
we have a tightened bound as :

P
{∣∣∣∣ ||X||√n − 1

∣∣∣∣ > 1

n1/15

}
6 C exp(−n1/15) (4.7)

For the results that we mention next, we introduce a few more notations: Suppose that X
and Y are two random variables attaining values in some measure space (here Ω will always
be R or Rn or a subspace E ⊂ Rn). We define their total variation distance as

dTV (X, Y ) = 2sup
A⊂Ω
|P{X ∈ A} − P{Y ∈ A}| (4.8)

where the supremum runs over all measurable sets A ⊂ Ω. Note that dTV (X, Y ) equals the
L1-distance between the densities of X and Y , when these densities exist. Let σn−1 stand
for the unique rotationally invariant probability measure on Sn−1, also referred to as the
uniform probability measure on the sphere Sn−1. Then we have the following result [2]-

Theorem 4.1.3. There exist sequences εn ↘ 0, δn ↘ 0 for which the following holds: Let
n > 1, and let X be a random vector in Rn with an isotropic log-concave density. Then
there exists a subset Θ ⊂ Sn−1 with σn−1(Θ) > 1− δn, such that for all θ ∈ Θ,

dTV (〈X, θ〉 , Z) 6 εn (4.9)

where Z ∼ N(0, 1) is the standard normal random variable.

The bounds given were εn 6 C

(
log log(n+ 2)

log(n+ 1)

)1/2

and δn 6 exp(−cn0.99) with c, C > 0

as universal constants.
The bounds were later improved in [3] by Klartag and the improved result is stated below:

Theorem 4.1.4. Let n > 1, and let X be a random vector in Rn with an isotropic
log-concave density. Then there exists a subset Θ ⊂ Sn−1 with σn−1(Θ) > 1− Ce−

√
n, such

that for all θ ∈ Θ, the real-valued random variable 〈X, θ〉 has a density fθ : R→ [0,∞) with
the following two properties:

(i)
∫∞
−∞ |fθ(t)− ζ(t)| dt 6 1

nk
,

(ii) For all, |t| 6 nk we have
∣∣∣∣fθ(t)ζ(t)

− 1

∣∣∣∣ 6 1

nk
.
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where ζ(t) denotes the denisty of zero mean, unit variance Gaussian random variable, and
C, k > 0 are universal constants.

For the special case where X is uniformly distributed over a convex body K ⊂ Rn we have
that any random projection of X over an `-dimensional subspace is close to an `-dimensional
gaussian random variable in the total variation sense. To formalise the result in [3], let us
denote by Gn,` the grassmanian1 of all `-dimensional subspaces of Rn, and let σn,` stand for
the unique rotationally invariant probability measure (for details, refer to e.g., [22]) on Gn,`.
For a subspace E ⊂ Rn and a point x ∈ Rn we write ProjE(x) for the orthogonal projection
of x onto E. Then we have:

Theorem 4.1.5. Let 1 6 ` 6 n be an integer and let K ⊂ Rn be a convex body. Let X be a
random vector that is distributed uniformly in K, and suppose that X has zero mean and
identity covariance matrix. Assume that ` 6 cnk. Then there exists a subset E ⊂ Gn,` with
σn,`(E) > 1− e−c

√
n such that for any E ∈ E ,

sup
A⊂E

∣∣∣∣P {ProjE(X) ∈ A} −
∫
A

ζ`(x)dx

∣∣∣∣ 6 1

nk
, (4.10)

where the supremum runs over all measurable sets A ⊂ E. Here ζ`(x) denotes the density of
standard multivariate normal distribution in R` and c, k > 0 are universal constants.

In [4] Klartag strengthens the previous result for projections of random variables with support
on convex bodies. The total variation estimate (4.10) implies that density of ProjE(X) is
close to the density of a certain Gaussian random vector Γ in L1-norm. Consequenctly, we
might deduce that the ratio between the density of ProjE(X) and the density of Γ deviates
from 1 by no more than 1/nk, in the significant parts of the subspace E. And this deduction
led to a convergence result in pointwise sense [4].

Theorem 4.1.6. Let X be an isotropic random vector in Rn with a log-concave density. Let
1 6 ` 6 nc1 be an integer. Then there exists a subset E ⊂ Gn,` with
σn,`(E) > 1− exp(−nc2) such that for any E ∈ E , the following holds. Denote by fE the
density of the random vector ProjE(X). Then,∣∣∣∣fE(x)

ζ`E(x)
− 1

∣∣∣∣ 6 C

nc3
(4.11)

for all x ∈ E with |x| 6 nc4 . Here ζ`E(x) is the standard `-dimensional Gaussian density in
E, and C, c1, c2, c3, c4 > 0 are universal constants.

1Grassmanian Gr(k, V ) is a space which parametrizes all linear subspaces of a vector space V of given
dimension k. For example, the Grassmanian Gr(1,Rn) is the space of all lines through the origin in Rn.
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4.2 Norm Preserving Random Projections

In [1], Klartag generalizes the notion of JL Lemma (3.2) to a general set and attempts to
reduce the dependence of k on n, in (3.3).

Definition 4.2.1. For a metric space (T, d) define

γα(T, d) = inf
Ts ⊂ T

|Ts| 6 22s , |T0| = 1

{
sup
t ∈ T

∞∑
s=0

2s/αd(t, Ts)

}
. (4.12)

Note that, by the celebrated “majorizing measures” theorem in [7], if {Xt : t ∈ T} is a
gaussian process, and d2

2(s, t) = E|Xs −Xt|2 is its covariance structure, then with c1, c2 > 0

as absolute constants, we have

c1γ2(T, d2) 6 E
[
sup
t∈T

Xt

]
6 c2γ2(T, d2). (4.13)

Definition 4.2.2 (Orlicz Norms). Let X be a random variable. Define the ψp norm of X as

||X||ψp = inf
C>0

{
E
[
exp
(
|X|p

Cp

)]
6 2

}
. (4.14)

A standard argument shows that if X has a bounded ψp norm then the tail of |X| decays
faster than 2 exp(−up/||X||pψp

). In particular, for p = 2, it means that X has a subgaussian
tail. Next, we mention few useful results from Klartag and Mendelson [1]. In the paper, using
these results, they also establish some bounds on the supremum of certain empirical processes
indexed by set of functions with the same L2 norm. Here, we state only the geometric
applications of the result, the most important of which (Theorem 4.2.4) is a sharpening of
JL Lemma (3.2). The key feature of the results is the wide-range applicability, as these
results only require that the matrix entries have subgaussian tails. Recall, in Section 3.2, we
had discussed a few results by Matousek [16] for matrix entries with subgaussian tails.

Theorem 4.2.3. Let (Ω, µ) be a probability space and let X,X1, X2, ..., Xk be independent
random variables distriuted according to µ. Set T to be a collection of functions, such that
for every f ∈ T , E [f 2(X)] = ||f ||2L2

= 1 and f(X) be subgaussian with ||f ||ψ2 6 β. Define
the random variable

Zk
f =

1

k

k∑
i=1

f 2(Xi)− ||f ||2L2
. (4.15)

Then for any e−c
′γ2

2(T, ||.||ψ2) < δ < 1, with probability larger than 1− δ,

sup
f∈T
|Zk

f | 6
c(δ, β)√

k
γ2(T, ||.||ψ2) (4.16)
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where c′ > 0 is an absolute constant and c(δ, β) depends on solely on δ, β.

As an application we have the following result (analogous to JL Lemma) -

Theorem 4.2.4. For every β > 0 there exists a constant c(β) for which the following holds.
Let T ⊂ Sn−1 be a set and let Γ : Rn → Rk be a random matrix whose entries are
independent, identically distributed random variable with zero mean, variance 1, and are
subgaussian with ||Γi,j||ψ2

6 β. Then, with probability larger than 1/2, for any x ∈ T and

ε >
c(β)√
k
γ2(T, ||.||2),

1− ε 6 1√
k
||Γx||`k2 < 1 + ε. (4.17)

Remark: The JL Lemma and its variants mentioned in Chapter 3 were valid for a finite set.
In contrast, all the results in this section are applicable to a general set. Also, for a set
T ⊂ Sd−1 of cardinality n, γ2(T, ||.||2) 6 c

√
log n, so another novelty in this theorem

compared to the JL Lemma is that log n can be slightly improved to γ2
2(T, ||.||2), however

the order dependency on n remains the same. And this observation is consistent with
Theorem 3.2.3 by Alon which shows that k = O(ε−2 log n) is nearly a tight bound.
Using Theorem 4.2.4, Klartag extended the result in [1] as follows:

Theorem 4.2.5. For every β > 0 there exists a constant c(β) for which of the following holds.
Let T ⊂ Sn−1 be a set, and let Γ : Rn → Rk be a random operator whose rows are
independent vectors Γ1,Γ2, ...,Γk ∈ Rn. Assume that for any x ∈ Rn and 1 6 i 6 k,
E 〈Γi, x〉2 = 1

k
||x||2 and || 〈Γi, x〉 ||ψ2 6 β|| 〈Γi, x〉 ||L2 . Then, with probability larger than

1/2, for any x ∈ T and any ε 6
c(β)√
k
γ2(T, ||.||2),

(1− ε) 6 ||Γx||`k2 < 1 + ε. (4.18)

Result 4.2.6. For the random projection Γ, where the elements of the matrix Γ are
independent random variables with zero mean, variance 1/k and ||Γi,j||ψ2

6 β||Γi,j||L2 , the
conditions required by Theorem 4.2.5 are met, and hence such a choice of random projection
also works fine.

Result 4.2.7. Another example from [1] is when Γ is an orthogonal projection on random
k-dimensional subspaces of Rn (note that this choice of Γ is exactly same as the choice of
random projection in [15] for proving JL Lemma, for details refer to Section 3.2). Recall Gn,k

is the grassmanian of k-dimesional subspaces of Rn and that there exists a unique rotation
invariant probability measure σn,k on Gn,k. Assume that P is an orthogonal projection on a
random k-dimensional subspace in Rn. Then for k > Cγ2

2(T, ||.||2)/ε2, Theorem 4.2.5 also
holds for Γ =

√
nP where the random k-dimensional subspace is drawn from Gn,k as per

σn,k.
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5. Our Attempts

5.1 Some Results for Gaussian Random Variables and Vectors

In this section, we state some results from [29] and [30] for the conditional density of jointly
gaussian random variables and vectors.

Result 5.1.1. If X ∼ Nn(µ,C) and Q is n× n non-singular matrix then for any η ∈ Rn,

QX + η ∼ Nn(Qµ+ η,QCQt). (5.1)

For details, refer to Lemma 7, Chapter 1 of [30].
Jointly Gaussian Random Variables

It is well known that for X1, X2, ..., Xn jointly Gaussian, the conditional mean of Xn given
X1, ...., Xn−1 is an affine map in X1, ..., Xn−1. Let X = (X1, X2, ..., Xn) ∼ N (µ,K) where
µ = E(X) = [E(X1), ...,E(Xn)]t denotes the mean vector and K = E [(X− µ)(X− µ)t] is
the covariance matrix with K−1 = [qij]. Then Xn is normal given X1, X2, ..., Xn−1 with

E(Xn|X1, ..., Xn−1) = µn −
1

qnn

n−1∑
j=1

qnj(Xj − µj) (5.2)

and
Var(Xn|X1, ..., Xn−1) =

1

qnn
. (5.3)

Jointly Gaussian Random Vectors

Let X be p+ q dimensional gaussian random vector whose density is given by Np+q(µ,Σ)

where X =

(
X(1)

X(2)

)
, µ =

(
µ(1)

µ(2)

)
and

Σ =

(
Σ11 Σ12

Σ21 Σ22

)

where X(1) and µ(1) are p-dimensional and Σ11 is p× p. Define Σ22.1 = Σ22 − Σ21Σ−1
11 Σ12.

Then the conditional density of X(2), given X(1) = x(1), given by

(
X(2)|X(1) = x(1)

)
∼ Nq

(
µ(2) + Σ21Σ−1

11 (x(1) − µ(1)), Σ22.1

)
. (5.4)
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5.2 Projections in EnKF: Why do they work?

Let (X, Y ) be randomly distributed in Rn1 × Rn2 with a log concave density f , where n1, n2

are large. Then there exists an affine map A : Rn1 × Rn2 → Rn1 × Rn2 such that f ◦ A is
isotropic log-concave density (look at discussion in Section 4.1). Let

(X̃, Ỹ ) := A ((X, Y )) , (5.5)

then clearly (X̃, Ỹ ) ∼ f ◦ A which is isotropic and log-concave.
Suppose we are given a random sample of N points from the joint distribution of (X̃, Ỹ )

(indexed by first N natural numbers). For a given ε > 0, let k1, k2 be integers such that

O(logN/ε2) 6 ki 6 (2ni)
c1 , i = 1, 2. (5.6)

Consider an orthogonal projection of (X̃, Ỹ ) onto a random k1 × k2-dimensional subspace E
of Rn1 ×Rn2 , that is to say, X̃ gets projected from Rn1 to a k1-dimensional subspace and Ỹ
gets projected from Rn2 to a k2-dimensional subspace. Then from Result 4.2.7, it follows
that with high probability norms are preserved for (X̃i, Ỹi) where i = 1, 2, ..., N , with
distortion atmost ε. Let us denote ProjE(X̃, Ỹ ) = (X̂, Ŷ ). Then with high probability
(obtained after O(N) projections)

(1− ε)||(x̂i, ŷi)||2 6 ||(x̃i, ỹi)||2 6 (1 + ε)||(x̂i, ŷi)||2, i ∈ {1, ..., N} (5.7)

where ||.||2 denotes 2-norm on Rn1 × Rn2 .
Let G denote the grassmanian of all S1 × S2 subspaces of Rn1 × Rn2 where for i = 1, 2,
Si ⊂ Rni and dim(Si) = ki and let σ denote the unique rotationally invariant probability
measure on G. Then from Result 4.1.6 we have that, there exists E ⊂ G with
σ(E) > 1− e−(n1+n2)c2 such that for all (x̂, ŷ) ∈ E with ||(x̂, ŷ)||2 6 (n1 + n2)c4∣∣∣∣fE(x̂, ŷ)

ζE(x̂, ŷ)
− 1

∣∣∣∣ 6 C

(n1 + n2)c3
(5.8)

where fE denotes the density of ProjE(X, Y ) and ζE(.) is the standard Gaussian density in
E. As a consequence, we have that with high probability (> 1− e−(n1+n2)c2 ), (X̂, Ŷ ) are
approximately gaussian, where approximation is in the sense of (5.8). That is we have

(X̂, Ŷ ) ≈ Nk1+k2(0, Ik1+k2). (5.9)

Let us assume that A is an invertible map.

(X̃, Ỹ ) = A(X, Y )⇒ (X, Y ) = A−1(X̃, Ỹ ). (5.10)
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Let’s denote ProjE by Γ. Then we have,

Γ(X, Y ) = ΓA−1(X̃, Ỹ )⇒ AΓ(X, Y ) = AΓA−1(X̃, Ỹ ). (5.11)

As (AΓA−1)2 = AΓ2A−1 = AΓA−1, we have that AΓA−1 is also a projection, consequently
results analogus to (5.7) and (5.8) hold for AΓA−1 as well. Thus, we have with high
probability, AΓA−1(X̃, Ỹ ) is approximately gaussian. That is

AΓ(X, Y ) ≈ Nk1+k2(0, Ik1+k2) (5.12)

Note that a Gaussian distribution in a smaller dimension can be extended to a Gaussian
distribution in higher dimensions by zero padding, i.e.

Nk1+k2(0, Ik1+k2) = Nn1+n2(0̂, C) (5.13)

where 0̂ ∈ Rn1+n2 and C is defined as

C :=


Ik1 0 0 0

0 [O]n1−k1 0 0

0 0 Ik2 0

0 0 0 [O]n2−k2

 (5.14)

Here [O]p denotes the zero matrix belonging to Rp×p.
We make an abuse of notation. Let ΓX denote the first k1 components of Γ(X, Y ) padded
with (n1 − k1) zeros and similarly let ΓY denote the last k2 components of Γ(X, Y ) padded
with (n2 − k2) zeros. That is for

Γ(X, Y ) = (g1, ..., gk1 , ..., gk1+k2) ∈ Rk1+k2 , (5.15)

we have

ΓX = (g1, ..., gk1 , 0, ..., 0) ∈ Rn1 , (5.16)

ΓY = (gk1+1, ..., gk1+k2 , 0, ..., 0) ∈ Rn2 . (5.17)

As A is affine, we have A(x, y) = B

[
x

y

]
+

[
b1

b2

]
where B ∈ R(n1+n2)×(n1+n2) and b1 ∈ Rn1

and b2 ∈ Rn2 . Note that A is invertible iff B is invertible. We assume the invertibility of A
and hence of B. With the notation introduced in (5.16) and (5.17), using (5.12), (5.13) and
Result 5.1.1 we have,

(ΓX,ΓY ) ≈ A−1Nn1+n2(0, C) = Nn1+n2

([
−b1

−b2

]
, B−1C(B−1)t

)
. (5.18)
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In other words, with high probability a random projection of (X, Y ) is approximately gaussian
(though the projection is not centered), where approximation is in the sense of (5.8).
Now, we consider the random variable E (ΓY |ΓX). Define the square matrix R of size
n1 + n2 as

R =

(
R11 R12

R21 R22

)
:= B−1C(B−1)t (5.19)

where R11 ∈ Rn1×n1 . Then for ΓX = z, (5.4) implies that ΓY |ΓX = z is approximately
gaussian.
Using (5.4), (5.18) and (5.19), we get

E(ΓY |ΓX)|ΓX=z ≈ −b2 +R21R
−1
11 (z + b1)

i.e., E(ΓY |ΓX)|ΓX=z = −b2 +R21R
−1
11 (z + b1) + o(ε)

Let z = Γx, where x is fixed. Based on the fact ||Γx|| ≈ ||x|| (that follows from
Theorem 4.2.5 and Result 4.2.7), if we are able to show that

E(Y |ΓX)|ΓX=Γx ≈ E(Y |X)|X=x (5.20)

Then applying Theorem 4.2.5 and Result 4.2.7 on ΓY we have ||Γy|| ≈ ||y|| and that gives,

E(Y |ΓX)|ΓX=x ≈ E(ΓY |ΓX)|ΓX=Γx, (5.21)

and consequently, we have

E(Y |X)|X=x ≈ E(Y |ΓX)|X=x ≈ E(ΓY |ΓX)|ΓX=Γx. (5.22)

That is,
E(Y |X)|X=x = −b2 +R21R

−1
11 (Γx+ b1) + o(ε). (5.23)

Now we use martingale theory to prove (5.20). Consider an orthonormal basis {ei} of R∞.
Let X =

∑n1

i=1Xiei. And let Fn = σ(Xi, i 6 n) be a filtration. If we consider the sequence
of projection Γn, as the projection on first n components, then we have,

E[Y |ΓnX] = E[Y |σ(Xi, i 6 n)] = E[Y |Fn]. (5.24)

Using martingale convergence and concentration inequality (see, e.g, Chap. 3 of [27]), we
can show that

E[Y |ΓnX] ≈ E[Y |Γ∞X] = E[Y |X]. (5.25)

And thus we get 5.23. Note that, the ensemble mean of the projections and its ensemble
covariance matrix are the Maximum likelihood estimates of actual mean and the covariance
matrix of the projections (for detailed discussion, see, Chap. 4 of Murphy [28]).
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6. Conclusion and Future Work

A theoretical justification behind the “magical success” of the heuristical methods associated
with Ensemble Kalman Filter was provided, when the data involved was “non-Gaussian” and
the dimension of the data involved was huge. With the results mentioned in Section 4, with
some work in Section 5, we used the fact that EnkF and alike methods involve projections
from very high dimensions to low dimensions which introduce Gaussianity into the data.
Also, the projections are successful in preserving norms of the originall points with small
distortion, leading to the ensemble mean of the projected data being close to the ensemble
mean of the original data, which in turn is close to the original mean of the original data (by
strong law of large numbers). Till now, we didn’t find a good reason in literature as to why
EnKF works with the non-Gaussian data. However, it is still popular because of its appeal to
easy implementation and surprising success as compared to other methods. We believe, that
the novelty of this work lies in its first attempt to justify the success of EnKF.
An obvious future line of work would be get exact error bounds and associated probability in
all the approximations we made. Also, the assumptions made by us seem intuitively
“reasonable”, but practical validation of those assumptions might provide better support to
our arguments.
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