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Abstract—The problem of sampling from the uniform distri-
bution over a polytope arises in various contexts. We propose a
new random walk for this purpose, which we refer to as the
Vaidya walk, since it is based on the volumetric-logarithmic
barrier introduced by Vaidya in the context of interior point
methods for optimization. We show that the Vaidya walk mixes
in significantly fewer steps compared to the Dikin walk, a random
walk previously studied by Kannan and Narayanan. In particular,
we prove that for a polytope in Rd defined by n constraints, the
Vaidya walk mixes in O

(√
n/d

)
fewer steps than the Dikin

walk. The per iteration cost for our method is at most twice
that of the Dikin walk, and hence the speed up is significant
for polytopes with n � d. Furthermore, the algorithm is also
faster than the Ball walk and Hit-and-Run for a large family of
polytopes. We illustrate the speed-up of the Vaidya walk over the
Dikin walk via several numerical examples and discuss possible
new and faster algorithms for sampling from polytopes.

I. INTRODUCTION

Sampling from distributions is a core problem that arises
in statistics, probability, operations research, and other areas
involving stochastic models [1], [2], [3], [4]. Sampling algo-
rithms are a prerequisite for applying Monte Carlo methods to
order to approximate expectations and other integrals. Recent
decades have witnessed great success of Markov Chain Monte
Carlo (MCMC) algorithms; for instance, see the handbook [5]
and references therein. These methods are based on construct-
ing a Markov chain whose stationary distribution is equal to
the target distribution, and then drawing samples by simulating
the chain for a certain number of steps. An advantage of
MCMC algorithms is that they only require knowledge of
the target density up to a proportionality constant. However,
the theoretical understanding of MCMC algorithms used in
practice is far from complete. In particular, a general challenge
is to bound the mixing time of a given MCMC algorithm,
meaning the number of iterations—as a function of the error
tolerance δ, problem dimension d and other parameters—for
the chain to arrive at a distribution within distance δ of the
target.

In this paper, we study a certain class of MCMC algorithms
designed for the problem of drawing samples from the uniform
distribution over a polytope. The polytope is specified in
the form K := {x ∈ Rd | Ax ≤ b}, parameterized by
the matrix-vector pair (A, b) ∈ Rn×d × Rn. Our goal is to
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understand the computational complexity required to obtain
δ-accurate samples, and how it grows as a function of the pair
(n, d). The problem of sampling uniformly from a polytope is
important in various applications and methodologies. For in-
stance, it underlies various methods for computing randomized
approximations to polytope volumes. There is a long line of
work on sampling methods being used to obtain randomized
approximations to the volumes of polytopes and other convex
bodies (e.g., [6], [7], [8], [9], [10]). Polytope sampling is also
useful in developing faster randomized algorithms for linear
programming and sampling contingency tables [11], as well
as in randomized methods for approximately solving mixed
integer convex programs [12], [13]. Sampling from polytopes
is also related to simlations of the hard-disk model in statistical
physics [14], as well as to simulations of error events for linear
programming in communication [15].

Many algorithms have been studied for sampling from
polytopes, and more generally, from convex bodies. Some
early examples include the Ball Walk [6] and the Hit-and-
Run algorithm [8], [9], which apply to sampling from general
convex bodies. Although these algorithms can be applied to
polytopes, they do not exploit any special structure of the
problem. In contrast, the Dikin walk introduced by Kannan
and Narayanan [11] is specialized to polytopes, and thus can
achieve faster convergence rates than generic algorithms. The
Dikin walk was the first sampling algorithm based on a con-
nection to interior point methods for solving linear programs.
More specifically, as we discuss in detail below, it constructs
proposal distributions based on the standard logarithmic barrier
for a polytope. In a later paper, Narayanan [16] extended
the Dikin walk to general convex sets equipped with self-
concordant barriers.

For a polytope defined by n constraints, Kannan and
Narayanan [11] proved an upper bound on the mixing time
of the Dikin walk that scales linearly with n. In many
applications, the number of constraints n can be much larger
than the number of variables d. It is also possible that for a
given problem, various constraints are redundant or repeated.
For such problems, linear dependence on the number of
constraints is not desirable. Consequently, it is natural to
ask if it is possible to design a sampling algorithm whose
mixing time scales in a sub-linear manner with the number of
constraints. Our main contribution is to investigate and answer



this question in this affirmative—in particular, by designing
and analyzing a new sampling algorithm with provably faster
convergence rate than the the Dikin walk while retaining its
advantages over the ball walk and the hit-and-run methods.

Our contributions: We introduce and analyze a new
random walk, which we refer to as the Vaidya walk since it
is based on the volumetric-logarithmic barrier introduced by
Vaidya [17]. We show that for a polytope in Rd defined by
n-constraints, the Dikin walk [11] has mixing time bounded
as O (nd), whereas the Vaidya walk mixes in O

(
n1/2d3/2

)

steps, and so is better in the regime n� d. We show that when
compared to the Dikin walk, the per-iteration computational
complexities of the Vaidya walk is within a constant factor.
Thus, in the regime n � d the overall upper bound on the
complexity of generating an approximately uniform sample is
much smaller for the Vaidya walk compared to the Dikin walk.

Organization: The remainder of the paper is organized
as follows. In Section II, we discuss some polynomial-time
random walks on convex sets and polytopes, and motivate
the starting point for the new random walk. In Section III,
we formally introduce Vaidya walk and provide its rate of
convergence. We demonstrate the speed-up of our method over
Dikin walk for some illustrative examples in Section III-D. In
Section IV we provide the road map to analyze the random
walk with some details of the proof of our main result. We
conclude with possible extensions of our work in Section V.

Notation: For two sequences aδ and bδ indexed by δ ∈ I ⊆ R,
we say that aδ = O (bδ) if there exists a universal constant
C > 0 such that aδ ≤ Cbδ for all δ ∈ I . For a set K ⊂ Rd,
the sets int (K) and Kc denote the interior and complement of
K respectively. We denote the boundary of the set K by ∂K.
We use γK to denote the condition number of the set K. In
particular, if the set K contains a ball of radius Rmin and is
contained in a ball of radius Rmax, then γK ≤ Rmax/Rmin.
The Euclidean norm for any vector x ∈ Rd is denoted by
‖x‖2. For two distributions P1 and P2 defined on the same
probability space (X ,B(X )), we denote the total-variation
(TV) distance between the two by ‖P1 − P2‖TV.

II. RELATED WORK AND PROBLEM SETTING

In this section, we discuss mixing rate of existing random
walks on convex sets and investigate the interior point method
literature to motivate our Vaidya walk. We end the section by
setting up the sampling from polytope problem and essential
notations for Vaidya walk.

We begin with a few definitions. For a Markov chain
{X0, X1, . . . , } on some probability space X with transition
kernel T and initial distribution µ0, we use µ0Tk to denote
the probability distribution of the iterate Xk. Note that T is
a map T : X × X → R+ such that for any x ∈ X , T(x, ·)
is a valid probability distribution on (X ,B(X )) where B(X ))
denotes a valid sigma-field on X . If this chain has a unique
invariant distribution π∗, we denote the Markov chain by the
triplet (µ0,T, π∗).

Definition 1 (Mixing-time). For a Markov chain (µ0,T, π∗),
the δ-mixing time is defined as

kmix(δ) := min

{
k

∣∣∣∣
∥∥µ0Tk − π∗

∥∥
TV ≤ δ

}
. (1)

Definition 2 (Warm-start). A distribution P1 (with density p1)
is said to be M -warm with respect to the distribution P2 (with
density p2), if

sup
A∈B(X )

(P1(A)

P2(A)

)
= sup
x∈X

(
p1(x)

p2(x)

)
≤M.

We say that the Markov chain (µ0,T, π∗) has a warm
start, if the distribution µ0 is M -warm with respect to the
distribution π∗ for some M <∞.

A. Related work

We first describe a couple of random algorithms that are
tailored to generating samples from approximate uniform
distribution on bounded convex sets K ⊂ Rd. We say that
a Markov chain mixes in O (f(δ)) steps to mean that for any
δ ∈ (0, 1), we have kmix(δ) = O (f(δ)). The general problem
of sampling from convex body given by a membership oracle
has witnessed significant progress recently [6], [18], [9], [19],
[20], [21], [22]. In such a problem, for each point x ∈ Rd,
one can query an oracle that answers Yes/No depending on
whether x is in the convex body K or not. The mixing-
time of these algorithms is measured in terms of the number
of oracle calls to obtain an approximate sample from the
target distribution on K. In Ball walk [6], when at point
x one generates a uniform point u from a ball of radius r
centered at x, where r denotes the step size of the algorithm.
If u ∈ K, the walk moves to u, else it remains at x. This
walk mixes in O

(
d2γ2K(M/δ)2 log(M/δ)

)
steps from an M -

warm start. In Hit-and-Run random walk [9], when at point
x, we draw a uniform line ` and sample a point uniformly
from the intersection ` ∩ K. From an M -warm start, Hit-
and-Run mixes in O

(
d2γ2K log3(M/δ)

)
steps. We remark that

the convergence rate of both of these algorithms depends on
the condition number γK of the set which can be arbitrary
large and which render the algorithms ineffective for high
dimensional problems.

Sampling uniformly from polytopes is a special case of
sampling from convex sets. Kannan and Narayanan [11]
introduced Dikin walk for sampling from polytopes defined
as K = {x ∈ Rd | Ax ≤ b, A ∈ Rn×d, b ∈ Rd}, where A and
b are known. Evidently, the construction of Dikin walk relied
on more information about the set K beyond the membership
oracle. This random walk is an instance of a randomized
interior point method and is based on the log-barrier. Their
method enjoys affine invariance and thereby its convergence
rate is independent of the condition number γK of the set. Its
mixing time was proven to be O (nd log(M/δ)) from an M -
warm start. Consequently, Dikin walk is faster compared to
Ball walk and Hit-and-run for certain class of polytopes, e.g.,
polytopes with polynomially many faces in d. Dikin walk [11]
proceeds by proposing a uniform point in a suitable state-
dependent ellipsoid followed by an accept-reject step. This



algorithm is similar to ball walk except that state-dependent
ellipsoids are used in place of fixed-radius Euclidean balls
to generate proposals. Dikin walk successfully adapts to the
boundary and the proposal ellipsoid remains inside K for all
x ∈ int (K), unlike ball walk where radius has to be reduced
to avoid high rejection rate near boundary of K.

The idea of randomized interior point method was further
extended by Narayanan [16] to introduce a polynomial-time
random walk for arbitrary convex set equipped with a self-
concordant barrier. In particular, for the general convex sets,
he designed a random walk on the Riemannian manifold as-
sociated with the Hessian of the self-concordant barrier of the
set, and proved convergence rates with polynomial dependence
on the dimension of the state space and the self-concordance
parameter. The extended Dikin walk when adapted to poly-
topes simplifies to Gaussian proposals with state-dependent
covariance. We remark that for high dimensional problems, the
two Dikin walks are almost similar because of the two well-
known concentration phenomena: (1) concentration of volume
on the boundary for a sphere, and (2) concentration of the
normalized Gaussian random vectors on the unit sphere.

More recently, a random walk on Riemannian manifolds—
geodesic walk [23]—was introduced to sample from uniform
distribution on polytopes. The geodesic paths bend away
from the boundary which allows the walk to take large steps
while still staying inside the polytope. From a warm start,
geodesic walk has anO

(
nd3/4

)
mixing time, thereby breaking

the quadratic barrier on mixing times. We discuss possible
extensions in Section V.

B. Problem setting and background on Dikin walk

Given K = {x ∈ Rd | Ax ≤ b, A ∈ Rn×d, b ∈ Rd}, a
bounded polytope with a non-empty interior described by n
inequalities, the goal is to sample uniformly from the polytope.
Note that the set K is bounded and hence the matrix A has
full-rank d ≤ n.

The Dikin walk is closely related to the interior point
methods for solving linear programs. In order to understand
the Vaidya walk, it is useful to understand this connection in
more detail. Let ai denote the i-th row vector of matrix A.
Consider the logarithmic barrier for the polytope K given by

Fx := F(x) = −
n∑

i=1

log(bi − a>i x). (2)

Each step of an interior point algorithm [24] involves (approx-
imately) solving a linear system involving the Hessian of the
barrier function, which is given by

∇2Fx := ∇2F(x) =

n∑

i=1

aia
>
i

s2x,i
. (3)

Narayanan et al. [11] designed the random walk with proposal
ellipsoid at point x (or scaled inverse covariance for Gaussian
proposal of extended Dikin walk [16]) given by Dx := ∇2Fx.
For all x ∈ K, Dx is a positive definite matrix. We can define
the Dikin local norm as the Mahalanobis distance [25] using
Dx as the covariance matrix. Note that in contrast to the ball

walk, the proposal distribution now depends on the current
state.

We first note that the behavior of the logarithmic barrier
relies heavily on the representation of the polytope. For
instance, a polytope is unchanged if we duplicate any of
its constraints or add any superficial constraint. Nevertheless,
unnecessary constraints have significant effect on the Hessian
of the barrier and provably reduce the size of the Dikin
ellipsoid thereby adversely affecting the convergence rate of
Dikin walk. Consequently, to improve the mixing time of
the random walk one might consider using a barrier with
unequal weights for the logarithmic terms in equation (2) or
equivalently covariance with unequal weights for the rank one
matrices in equation (3). In fact, such a modification does
lead to significant improvements in interior point methods
for optimization [17], [26]. Inspired by this line of work, we
introduce weighted logarithmic barrier to define the Vaidya
walk. In our method, the Gaussian proposals at x are generated
using the following inverse covariance matrix (up to scaling)

Vx :=

n∑

i=1

(σx,i + βV)
aia
>
i

s2x,i
, (4)

where βV := d/n and the scores σx are defined as

σx :=

(
a>1 (∇2Fx)−1a1

s2x,1
, . . . ,

a>n (∇2Fx)−1an
s2x,n

)>
, (5)

for x ∈ int (K). The covariance matrix Vx is related to the
Hessian of the following combination of volumetric barrier
and the logarithmic barrier introduced by Vaidya et al. [17],
[27],

Vx := log det∇2Fx + βVFx. (6)

In particular, the quadratic forms v>Vxv and v>∇2Vxv satisfy
the condition [17]

∀v ∈ Rd, 5v>∇2Vxv ≥ v>Vxv ≥ v>∇2Vxv.
To solve a linear program in Rd with n constraints, the log-
barrier method requires O (

√
n) iterations and Vaidya’s barrier

method requires O
(
(nd)1/4

)
iterations where the per-iteration

complexity remains the same order of solving a linear system
of equations. The speed-up obtained is primarily because of
the larger Newton steps with the Vaidya barrier in comparison
to the Newton steps with the logarithmic barrier. In this
work, we show that the improvement enjoyed by the use of
weighted barrier in linear program solver can be transferred
to a sampling problem as well.

C. Comparison of different random walks

To provide an overview of the rates of the random walks
so far, we summarize the rates and per step complexity for
different random walks in Table I. Except for ball walk and
Hit-and-run, all the random walks have a per iteration com-
plexity of the order of linear-system solver. In the rightmost
column of the Table I, we mention the overall complexity of
different random walks for sampling from convex sets with
condition number of O

(
d2
)
. We remark that the condition



Algorithm 1: Vaidya Walk with parameter r (VW(r))

Input: Parameter r and x0 ∈ int (K)
Output: Sequence x1, x2, . . .

1 for i = 0, 1, . . . do
2 Ci ∼ Fair Coin
3 if Ci = Heads then xi+1 ← xi // lazy step
4 else
5 ξi+1 ∼ N (0, Id)
6 zi+1 = xi+1 +

r

(nd)1/4
V −1/2
xi ξi+1 // propose a

new state
7 if zi+1 /∈ K then xi+1 ← xi // reject an infeasible

proposal
8 else

9 αi+1 = min

{
1,
pV
zi+1

(xi+1)

pV
xi+1

(zi+1)

}
10 Ui+1 ∼ U [0, 1]
11 if Ui+1 ≥ αi+1 then xi+1 ← xi // reject even

a valid proposal
12 else xi+1 ← zi+1 // accept the proposal
13 end
14 end
15 end

number γK of polytopes with polynomially many faces can
not be O

(
d

1
2−ε
)

for any ε > 0, but can be arbitrarily larger,
even exponential in dimension d.

III. VAIDYA WALK AND CONVERGENCE

In this section, we provide the details of Vaidya walk,
provide its rate of convergence and illustrate its performance
via simulated examples.

A. Vaidya walk

The Vaidya walk with radius parameter r > 0, denoted by
VW(r) for short, is defined by a Gaussian proposal distri-
bution: given a current state x ∈ int (K), it proposes a new
point by sampling from the multivariate Gaussian distribution
N
(
x, r2√

nd
Vx
−1
)

. In analytic terms, the proposal density at
x is given by

pV
x(z) := pVaidya(x, z)

=
√

detVx

(
nd

2πr2

)d/2
exp

(
−
√
nd

2r2
(z − x)>Vx(z − x)

)
.

(7)

As the target distribution for our walk is the uniform distri-
bution on K, the proposal step is followed by an accept-reject
step. Thus the overall transition distribution for the walk at
state x is defined by a density given by

qVaidya(x, z) =

{
min {pV

x(z), pV
z(x)} , z ∈ K and z 6= x,

0, z /∈ K,
(8)

and a probability mass at x, given by
1−

∫
z∈Kmin {px(z), pz(x)} dz. In Algorithm 1, we

summarize the different steps of the Vaidya walk. As pointed
out before, Dikin and Vaidya walk differ in the proposal step.
The proposal distribution for (the Gaussian proposal) Dikin
walk is given by N

(
x, r

′2

d D
−1
x

)
for a suitable universal

constant r′.
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Fig. 1. High probability regions for proposal distributions of
Dikin and Vaidya walks at different points inside [−1, 1]2
for different values of n. The regions become smaller when
the chain moves near the boundary. Clearly, Vaidya ellipsoids
are larger than Dikin ellipsoids and are affected less severely
on increasing n.

B. Main results

Now we state our main theorem which provides a bound for
the mixing time of the walk. We use π∗ to denote the uniform
distribution on K from now on.

Theorem 1. Let (µ0,TVaidya, π
∗) denote the Markov chain

associated with the random walk VW(10−4) (Algorithm 1)
and let the chain have an M -warm start. Then for any
δ ∈ (0, 1], the mixing time of the Markov chain is bounded as
kmix(δ) ≤ Cn1/2d3/2 log(

√
M/δ), where C > 0 is a universal

constant.

A brief outline of the formal proof is provided in Sec-
tion IV-C. We now provide a high level proof of the mixing
time of Markov chain. The volumetric-logarithmic barrier for
polytopes has a smaller self-concordance parameter than the
log-barrier [17], as the barrier puts unequal weight on each
constraint. This fact is the primary source of the speed up
in convergence rate of Vaidya walk over Dikin walk on a
polytope. In simple words, a Markov chain’s mixing time
depends on how fast it explores its state space. One way
to ensure that the exploration happens fast is by designing a
chain such it jumps across far-off regions with non-vanishing
probability. For both Dikin and Vaidya walks, the size of the
high probability proposal regions depend on how far the chain
is from the boundary and the number of constraints used to
define the polytope. However, for the new method the effect of
number of constraints is less severe. We demonstrate these two
facts in Figure 1 for the polytope [−1, 1]2. The set is defined
exactly by 4 constraints {x = ±1, y = ±1}, however repeating
the constraints multiple times changes the proposal ellipsoids
(high probability regions for the proposal distribution).

Theorem 1 assumes an M -warm start for the random walk.
Instead, we can also have a deterministic start for the walk
from a point x0 ∈ int (K) that is not too close to the
boundary ∂K. Such a point can be found using standard opti-
mization methods, e.g., using a Phase-I method for Newton’s
algorithm. (See Section 11.5.4 in the book [24] for further
discussion on Phase-I method.) As expected, the mixing times
now depend on the distance of the starting point from the
boundary. A point x ∈ int (K) is called s-central if for any



Random walk kmix(δ) Iteration cost Complexity for γK=d2

Ball walk [6] d2γ2
K
M2

δ2
log M

δ
nd nd7 · M

2

δ2
log M

δ

Hit-and-Run [19] d2γ2
K log3 M

δ
nd log γK nd7 log d · log3 M

δ

Dikin walk [11] nd log M
δ

nd2 n2d3 · log M
δ

Geodesic walk [23] nd3/4 log M
δ

nd2 n2d11/4 · log M
δ

Vaidya walk n1/2d3/2 log M
δ

nd2 n3/2d7/2 · log M
δ

TABLE I. Order of computational complexity of random walks from M -warm start on polytope K = {x ∈ Rd|Ax ≤ b, A ∈
Rn×d, b ∈ Rn} with condition number γK. Note that nd2 denotes the complexity of linear system solving, using standard and
numerically stable algorithms, for n equations in d dimensions.

chord ef passing through x such that e, f ∈ ∂K, we have
‖e− x‖2 / ‖f − x‖2 ≤ s. For a start at an s-central point
x0, Dikin walk with proposals uniformly generated from the
Dikin ellipsoid of radius r′ = 3/40 has a polynomial bound on
mixing time. (See Algorithm 1 in the paper [11].) The authors
proved that when the walk moves to a new state for the first
time (i.e., min{i | xi+1 6= xi}), the distribution of the iterate is(√

2ns/r′
)d

-warm with respect to the distribution π∗. It was
also shown that the number of steps needed to move to a new
state follows a geometric distribution with a bounded mean.
These two facts motivate us to consider a hybrid random walk
where we use Dikin walk for a few steps in the beginning to
provide a warm start to Vaidya walk.

Given an s-central point x0, we simulate Dikin walk till we
observe a new state. Let k1 denote the (random) number of
steps taken to make the first non-trivial move. After k1 steps,
we run the walk VW(r) with xk1

as the initial point. We
call such a walk as “s-central-Dikin-start-Vaidya-walk with
parameter r”. Let TDikin denote the transition kernel of the
Dikin walk stated above. Then, we have the following mixing
time bound for this hybrid walk.

Corollary 1. There exist positive universal constants c, C,C ′

such that for any positive s, an s-central-Dikin-start-Vaidya-
walk with parameter r = c satisfies

∥∥δx0Tk1
DikinTkVaidya − π∗

∥∥
TV ≤

δ, for all k ≥ Cn1/2d5/2 log(ns/δ), where k1 is a geometric
random variable with E [k1] ≤ C ′.

The proof follows immediately from Theorem 1 by Kannan
et al. [11] and our Theorem 1 and is thereby omitted. Once
again we observe that the mixing time bounds are improved
by a factor of O

(√
n/d

)
when compared to Dikin walk from

an s-central start [11], [16].

C. Per Iteration Cost

We show that the per-iteration costs of the Dikin and
Vaidya walks are of the same order. The proposal step of
Vaidya walk requires matrix operations like matrix inver-
sion, matrix multiplication and singular value decomposition
(SVD). The accept-reject step requires computation of matrix

determinants, besides a few matrix inverses and matrix-vector
products. The complexity of all aforementioned operations is
O
(
nd2
)
. Thus, per iteration computational complexity for the

Vaidya walk is O
(
nd2
)
.

Both the Dikin and Vaidya walks requires an SVD com-
putation for inverting the Hessian of Dikin barrier ∇2Fx. In
addition for the Vaidya walk, we have to invert the matrix Vx,
which leads to almost twice the computation time of the Dikin
walk per step. This difference can be observed in practice.

We now compare the performance of the two random walks
for some simulated examples.

D. Numerical experiments

In this section, we demonstrate the speed-up gained by
Vaidya walk over Dikin walk for a warm start on different
polytopes. We also provide an efficient implementation of
both random walks and all experiments presented in this sub-
section at https://github.com/rzrsk/vaidya-walk. In particular,
we simulate the random walks in R2 with initial distribution
µ0 = N (0, 0.04 I2), on the following three different types of
polytopes:

1) The set [−1, 1]2,
2) symmetric polytopes with n-constraints generated ran-

domly, and
3) the interior of regular n-polygons on the unit circle.

We remark that the warmness-M in all cases is bounded by
500.

For Case 1, we can represent the set exactly by 4 linear
constraints. Repeating the constraints increases n for the
matrix A associated with K and hence affects the mixing times
of the random walks. We plot the empirical distribution for the
iterates from the random walks for n = 64 and 512 in Figure 2
from which we observe significant difference in the effect of
n on their rates. Note that the warmness M ≤ 8 for this case.
Further, we also plot the approximate mixing time for the set
S = ([−1,−1/2] ∪ [1/2, 1])× [−1, 1]. For a fixed value of n,

In theory, the matrix computations for the Dikin walk can be carried out in
time ndν for an exponent ν < 2, but such algorithms are not stable enough
for practical use.

https://github.com/rzrsk/vaidya-walk
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Fig. 2. Comparison of Dikin and Vaidya walks (200 runs)
on the polytope K = [−1, 1]2. (a) Samples from the initial
distribution µ0 = N (0, 0.04 I2) and the uniform distribution
(π∗) on [−1, 1]2. (b) Plot of kmix (9) versus the number of
constraints (n) for S = ([−1,−1/2] ∪ [1/2, 1]) × [−1, 1].
Dotted lines show the best-fit lines which have slopes 0.88
and 0.45 or Dikin and Vaidya walks respectively. (c, d)
Empirical distribution of samples of Dikin (blue/top rows)
and Vaidya (red/bottom rows) walks for different values of
n at iteration k = 10, 100, 500 and 1000. From the figures
we can observe: (1) As n increases, Dikin and Vaidya walks
take more number of iterations to mix. (2) The effect of
increasing n on mixing time of Vaidya walk is significantly
lesser compared to that on the mixing time of Dikin walk.

let µ0T̂k denote the empirical measure after k-iterations across
1000 experiments. In Figure 2b, we plot kmix as a function of
n where

k̂mix := min

{
k

∣∣∣∣
π∗(S)− µ0T̂k(S)

π∗(S)
≤ 1

4

}
, (9)

and observe that the slope of the best fit lines in the log-log
plot is approximately 0.88, 0.45 for Dikin and Vaidya walks
respectively, which is in accordance with Theorem 1.

In Case 2, for each constraint i, we fix bi = 1. To generate
ai, first we draw two uniform random variables and then flip
the sign of both of them with probability 1/2 and assign these
values to the vector ai. From Figure 3a-3b we observe that the
effect of n on the mixing time of the two walks is different
for this case, and Vaidya walk seems to mix faster than Dikin
walk. A similar observation can be made even from Figure 3c-
3d for Case 3.

IV. ANALYSIS OF VAIDYA WALK

In this section, we first provide an outline of a general
method of bounding the rate of convergence of geometric
random walks on convex sets in Section IV-A, followed by
some auxiliary results in Section IV-B that are used to invoke
the general method in our case. We then prove our main result
in Section IV-C. For the proofs of the auxiliary results, we
refer the reader to the arxiv technical report.

A. A general method to bound mixing time

For a discrete-space discrete time Markov chain, a bound on
mixing time is obtained via bounds on the spectral gap of the

k=0 k=10 k=100 k=500 k=1000

(a) n = 64

k=0 k=10 k=100 k=500 k=1000

(b) n = 2048

k=0 k=10 k=100 k=500 k=1000

(c) n = 64

k=0 k=10 k=100 k=500 k=1000

(d) n = 2048

Fig. 3. Empirical distribution of samples from 200 runs
of Dikin (blue/top rows) and Vaidya (red/bottom rows) on
different polytopes. k denotes the iteration number. (a, b)
We simulate the two random walks on random polytopes
with 64 and 2048 constraints respectively (for details refer
to Section III-D). (c, d) We simulate the walks on regular n-
polygons inscribed in the unit circle, for n = 64 and 2048.
For both cases, we observe that higher n slows down the
walks, with visibly more effect on mixing time of Dikin walk
compared to Vaidya walk.

transition matrix associated with the chain. Often, an indirect
bound on the spectral gap is obtained via Cheeger’s inequality
that bounds the spectral gap in terms of the conductance of the
chain. Lovász and Simonovits [18] proved a similar connection
between conductance and convergence rate for continuous-
space Markov chains. Thus proving an upper bound for the
mixing time of a geometric random walk on convex sets
often boils down to showing a good lower bound on the
conductance of the chain—these arguments have been used
for ball walk [6], Hit-and-run [9], [19] and Dikin walk [16],
[11], [28] on convex sets. We refer the reader to the survey
by Vempala [29] for a more thorough discussion on geometric
random walks.

For a convex and bounded state space, using some powerful
isoperimetric inequalities, Lovász showed that to bound the
conductance, it suffices to establish that the chain satisfies
the following good-neighborhood-property: “if two points are
close, then their one-step transition distribution are also close.”
For quantifying closeness in the property, the distributions are
contrasted with the total-variation distance, while for distance
between points we use the cross ratio, that we define below.
We formally state the result by Lovász in Lemma 1. Much
of our technical work focuses on establishing this property
for our method where we prove that for Vaidya walk when
compared to Dikin walk, the points can be much far apart,
with their one-step transition distributions still being close.

For a given pair of points x, y ∈ K, let e(x), e(y) ∈ ∂K
denote the intersection of the chord joining x and y with K
such that e(x), x, y, e(y) are in order (see Figure 4a). The
cross-ratio dK(x, y) is given by

dK(x, y) =
‖e(x)− e(y)‖2 ‖x− y‖2
‖e(x)− x‖2 ‖e(y)− y‖2

. (10)

The ratio dK(x, y) is related to the Hilbert metric on K, which
is given by log (1 + dK(x, y)) (see the paper by Bushell [30]
for more details). Let X0, X1, . . . denote a lazy reversible
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Fig. 4. Polytope K = {x ∈ Rd|Ax ≤ b}. (a) The points
e(x) and e(y) denote the intersection points of the chord
joining x and y with K such that e(x), x, y, e(y) are in
order. (b) A geometric illustration of the argument (13). It
is straightforward to observe that ‖x− y‖2/‖e(x)− x‖2 =
‖u− y‖2/‖u− v‖2 =

∣∣a>i (y − x)∣∣/ (bi − a>i x).
random walk on a bounded convex set K with transition kernel
T (x, ·) = δx(·)/2+T̃ (x, ·)/2 where δx denotes the dirac-delta
distribution with unit probability mass at x and T̃ (·, ·) denotes
an arbitrary valid transition kernel on X . Let the chain be sta-
tionary with respect to the uniform distribution on K (denoted
by π∗). We use the shorthands Tx = T (x, ·), T̃x = T̃ (x, ·).
The following lemma gives a bound on the mixing-time of
the chain {Xt, t ≥ 0}.

Lemma 1. Suppose that
∥∥∥T̃x − T̃y

∥∥∥
TV
≤ 1− ρ, for all x, y ∈

int (K) such that dK(x, y) < ∆, for some ρ ∈ (0, 1) and
∆ > 0. Then for every distribution µ0 that is M -warm with
respect to π∗, we have

∥∥µ0T k − π∗
∥∥

TV ≤
√
M exp

(
−k ∆2ρ2

4096

)
.

To prove Theorem 1, we show that the random walk
VW(10−4) satisfies the assumptions of Lemma 1 with suitable
∆ and ρ. Besides Lemma 1, our proof techniques are inspired
by the proofs of convergence rate of Dikin walk on polytopes
presented by Kannan et al. [11] and the simple proof of Dikin
walk provided by Sachdeva et al. [28].

B. Some auxiliary results

We now introduce some notation and auxiliary results that
are useful for the proof. For all x ∈ int (K), define the “Vaidya
local norm at x” as

‖.‖x :v 7→
∥∥∥V 1/2

x v
∥∥∥
2

=

√√√√
n∑

i=1

(σx,i + βV)
(a>i v)2

s2x,i
. (11)

The following lemma provides some properties of the leverage
scores σx (5) for all x ∈ int (K).

Lemma 2. For any x ∈ int (K), the following properties hold:
(a) σx,i ∈ [0, 1] for all i ∈ [n], and
(b)

∑n
i=1 σx,i = d.

Next, we state a lemma that shows that (1) for suitable
choice of parameter, the transition and proposal distributions
are close for all x ∈ int (K), and (2) if two points x, y ∈
int (K) are close in Vaidya-local norm, then the one-step
proposal distributions are also close in TV-distance. We use
Px to denote the proposal distribution (7) and Tx to denote
the transition distribution (8) at x ∈ int (K) for the Vaidya
walk with parameter 10−4.

Lemma 3. There exists a continuous non-decreasing function
f : [0, 1/12] → R+ with f(1/12) ≥ 10−4, such that for
any ε ∈ (0, 1/4], the random walk VW(r) with r ∈ [0, f(ε)]
satisfies for all x ∈ int (K), ‖Tx − Px‖TV ≤ 5ε and
‖Px − Py‖TV ≤ ε, ∀x, y ∈ int (K) such that ‖x− y‖x ≤
εr/(2(nd)1/4) .

We are now well equipped to provide a formal proof of
our main result. The proof of the lemmas stated above are
provided in the arXiv technical report.

C. Proof of Theorem 1

To invoke Lemma 1 for VW(10−4), we need to show that for
any two points x, y ∈ int (K) such that dK(x, y) is small, we
have that ‖Tx − Ty‖TV is small. Along the outline discussed in
previous subsection, we break our analysis in two steps—(A)
We first relate the cross-ratio dK(x, y) to the local norm (11)
at x, and (B) then use Lemma 3 to show that if x, y ∈ int (K)
are close in local-norm, the transition kernels Tx and Ty are
close in TV-distance.

Step (A): We claim that for all x, y ∈ int (K), the cross-
ratio can be lower bounded as dK(x, y) ≥ 1√

2d
‖x− y‖x.

Note that we have

dK(x, y)
(i)

≥ max

{ ‖x− y‖2
‖e(x)− x‖2

,
‖x− y‖2
‖e(y)− y‖2

}

(ii)

≥ max

{ ‖x− y‖2
‖e(x)− x‖2

,
‖x− y‖2
‖e(y)− x‖2

}

where step (i) follows from the inequality ‖e(x)− e(y)‖2 ≥
max {‖e(y)− y‖2 , ‖e(x)− x‖2} and step (ii) from the in-
equality ‖e(x)− x‖2 ≤ ‖e(y)− x‖2. Furthermore, from Fig-
ure 4b, we observe that

max

{ ‖x−y‖2
‖e(x)−x‖2

,
‖x−y‖2
‖e(y)−x‖2

}
=max
i∈[n]

∣∣∣∣
a>i (x−y)

sx,i

∣∣∣∣ . (13)

Note that maximum of a set of non-negative numbers is greater
than the weighted mean of the numbers. Using this fact with
weights {σx,i + βV}ni=1 and using properties (a) and (b) from
Lemma 2 yields the claim.

Step (B): By the triangle inequality, we have

‖Tx − Ty‖TV ≤‖Tx − Px‖TV

+ ‖Px − Py‖TV + ‖Py − Ty‖TV .

Thus, for any (r, ε) such that ε ∈ [0, 1/4] and r ≤ f(ε),
Lemma 3 implies that ∀x, y ∈ int (K) such that ‖x− y‖x ≤

rε
2(nd)1/4

, we have ‖Tx − Ty‖TV ≤ 11ε. Consequently, the
walk VW(r) satisfies the assumptions of Lemma 1 with
∆ = 1√

2d
· rε
2(nd)1/4

and ρ = 1− 11ε. Since f(1/12) ≥ 10−4,
we can set ε = 1/12 and r = 10−4 and doing some algebra
yields the claimed upper bound for the mixing time of Vaidya
Walk.

V. DISCUSSION

In this paper, we focused on improving MCMC sampling
algorithms for convex sets by building on the advancements
in the field of interior point methods. We specialized our dis-
cussion to the polytopes. The better self-concordance property



and several other key properties exhibited by the volumetric-
logarithmic barrier for polytopes were extended by Anstre-
icher [31] to more general convex sets defined by semidefinite-
constraints, namely, linear matrix inequality (LMI) constraints.
Moreover, Narayanan [16] showed that for a convex set
defined by LMI constraints and equipped with the log-det
barrier, Dikin walk mixes in polynomial time. It is possible
that an appropriate Vaidya walk on such sets would have a
speedup over Dikin walk.

Narayanan et al. [32] use Dikin walk to generate samples
from time varying log-concave distributions with appropriate
scaling of the radius for difference class of distributions. It
would be interesting to see if a suitable adaptation of Vaidya
walk for such cases would provide a significant gain.

Another possible extension of our work can be a new
random walk on Riemannian manifolds based on the matrix
Vx, in contrast to the Geodesic walk [23] where the manifold
is based on the Hessian ∇2Fx. In contrast to Dikin walk’s
O (nd) mixing time, the Geodesic walk has an O

(
nd3/4

)

dependence on mixing time. It would be interesting to see
whether a geodesic version of Vaidya walk has a convergence
rate of O

(
n1/2d5/4

)
.
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