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Abstract—We consider a stochastic approximation imple-
mented on a network of computing elements corresponding to the
nodes of a connected graph wherein each node polls one or more
of its neighbors at random and pulls the relevant data from there.
A blind implementation suffers from ‘sampling bias’ whereby
each node’s contribution to the computation gets weighed by
its frequency of being polled. We propose a modified step size
schedule that works around this problem. As an example, we
propose a modification of an existing scheme for reputation
systems that removes such a bias therein.

I. I NTRODUCTION

We consider a classical stochastic approximation algorithm
implemented on a network of processors placed on a connected
graph. The processors poll their neighbors at random instants
to pull their data, leading to a complicated asynchronous
behavior. This can lead to a sampling bias that can adversely
affect the convergence properties of the algorithm. By
extending the ideas of an earlier work on asynchronous
stochastic approximation [2] we propose a modification of
the step-size schedule that works around this problem. As an
illustration, we analyze a reputation system motivated by [11].

The paper is organized as follows. The next section high-
lights the difficulties caused by sampling bias in a very general
set-up and describes our fix for the same. Section III first
describes a reputation system from [11] and indicates how
the aforementioned problem is very much present in this
scheme. It then proposes an alternative scheme where the
proposed modification can be effectively used to circumvent
the problem. Section IV presents some supporting numerical
experiments. Following some remarks in Section V, Section
VI concludes by discussing the results.

II. REMOVING SAMPLING BIAS

Consider a connected directed or undirected graphG =
(V, E) with node setV, |V| = d, and edge setE . N (i) ⊂ V
is the set of neighbors ofi ∈ V. Each nodei corresponds to
a computing element that performs the following iteration at

each timen, n ≥ 0.

xi(n + 1) = xi(n)+

a(n)

 ∑
j∈N (i)

ξij(n) (hij(x(n), Y (n)) + Mi(n + 1))

 .
(1)

Here we assume the following: forn ≥ 0 and

Fn := σ(x(m),M(m), Y (m), ξij(m),m ≤ n, i, j ∈ V),

• {Y (n)} is a process taking values in a finite state space
S and satisfying:

P (Y (n + 1) = j|Fn) = px(n)(j|Y (n)), j ∈ S, n ≥ 0,

for a parametrized family of transition probabilities
{px(·|·)}, x ∈ Rd, onS that is Lipschitz inx (theMarkov
noise),

• {M(n)} is a square-integrable sequence adapted to{Fn}
satisfying forn ≥ 0,

E[M(n + 1)|Fn] = 0

E[‖M(n + 1)‖2|Fn] ≤ K(1 + ‖x(n)‖2),

for someK > 0 (the Martingale noise),
• a(n) > 0 satisfy∑

n

a(n) = ∞,
∑

n

a(n)2 < ∞, (2)

• hij(·) : Rd 7→ R are Lipschitz, and,
• {ξij(n)} are independent{0, 1}-valued random variables.

If one ignores theξij(n)’s, this is essentially the standard
stochastic approximation algorithm with ‘drift’hij , step-
size schedule{a(n)}, and Martingale and Markov noises
{M(n)}, {Y (n)} resp., satisfying standard conditions - see,
e.g., chapters 2 and 6 of [3]. The{ξij(n)} are indicator random
variables with the interpretation:ξij(n) = 1 ⇐⇒ i polls
j ∈ N (i) at timen. We shall assume that

sup
n
‖x(n)‖ < ∞ a.s., (3)

which usually needs a separate verification - see Theorem
9, p. 75, [3], for a sufficient condition. Our focus here is
on the effect of the sampling variables{ξij(n)}, so we do
not discuss this and some other standard issues in stochastic



approximation in any detail.

The analysis of Chapter 6 and 7 of [3] suggests that under
these hypotheses, (1) will almost surely track the asymptotic
behavior of the ordinary differential equation (o.d.e. for short)

ẋi(t) =
∑

j∈N (i)

λij(t)hij(x(t)), 1 ≤ i ≤ d. (4)

where λij(t) ≥ 0 reflect the ‘instantaneous relative
frequencies’ with which the respective polling events (ofj
by i) take place. (This is an intuitive statement, seeibid. for
a mathematically rigorous account.)

If ξij(n) ≡ 1 ∀ i, j, n, thenλij(t) ≡ 1 ∀ i, j, n, as well and
the above o.d.e. becomes

ẋi(t) =
∑

j

hij(x(t)), 1 ≤ i ≤ d. (5)

This would correspond to asynchronousiterate, corresponding
to the ideal algorithm. The way (1) comes about is when
there are communication constraints that force a random
polling as above. But the asymptotic behavior of (4) can be
quite different from that of (5), implying possibly undesirable
behavior of the algorithm.

To motivate our modification of the above scheme, we recall
the framework of [2]. In [2], the iteration analyzed was

xi(n+1) = xi(n)+a(n)ξi(n) (hi(x(n)) + Mi(n + 1)) . (6)

where ξi(n) = 1 if the ith component is updated at timen
and0 otherwise.

Defineν(i, n) :=
∑n

m=0 ξi(m), n ≥ 0. Assume that:
1) There existsδ > 0 such that∀i,

lim inf
n↑∞

ν(i, n)
n

≥ δ a.s. (7)

2) {a(n)} satisfy, forA(n) :=
∑n

m=0 a(m), c ∈ (0, 1),

sup
n

a(bync)
a(n)

< ∞ ∀ y ∈ (0, 1), (8)

A(bync)
A(n)

n↑∞→ 1 uniformly in y ∈ (c, 1]. (9)

Under these conditions, it was shown that if (3) holds,
then (6) a.s. tracks the asymptotic behavior of the o.d.e.
ẋ(t) = 1

dh(x(t)), which is same as that of the o.d.e.
ẋ(t) = h(x(t)) because they are merely time-scaled versions
of each other.

Remark 1 In [2], an additional complication is considered,
viz., communication delays. We do not include it here because
one can handle it by completely analogous arguments as
in ibid. There are additional hypotheses on{a(n)} therein
expressly for the purpose of analyzing the effect of delays.
We have skipped them here.

Motivated by this, we analogously defineν(i, j, n) :=∑n
m=0 ξij(m), n ≥ 0. Assume that (7) holds withν(i, j, n)

replacingν(i, n) and (8), (9) also hold. Replace (1) by

xi(n + 1) = xi(n)+ ∑
j∈N (i)

a(ν(i, j, n))ξij(n) (hij(x(n), Y (n)) + Mi(n + 1))

 .

(10)

Arguing exactly as in [2], we can then conclude:

Theorem 1Under (3), (10) a.s. tracks the asymptotic behavior
of the o.d.e.

ẋi(t) =
∑

j

hij(x(t)), 1 ≤ i ≤ d, t ≥ 0. (11)

We conclude this section with an observation that while
different step-sizes for different components have been used
in [2] and elsewhere for possibly other reasons (see, e.g., the
‘ two time-scale stochastic approximation’ of [3], Section 6.1),
this is perhaps the first instance where different step-sizes have
been used in thesamecomponent to achieve a prescribed goal.

III. A R EPUTATION SYSTEM

In [11], the problem of individually rating a committee of
experts based on their track record was addressed as follows.
We label the experts as{1, · · · , d}. Suppose the initial ratings
of the experts (from now, we use the term reputation in place
of rating) are all equal, saypi

0 = 1
d ∀i. At each timet + 1,

the reputationpi
t of an active experti is updated based on his

predictionxi
t ∈ [0, 1] of observationyt ∈ {0, 1}, {yt} i.i.d.,

according to the update rule

pi
t+1 = pi

t

xi
t

ŷt
if i ∈ Et, yt = 1,

= pi
t

1− xi
t

1− ŷt
if i ∈ Et, yt = 0,

= pi
t if i /∈ Et, (12)

whereEt := the set of experts active at timet and ŷt is their
weighted prediction given by

ŷt :=

∑
i∈Et

pi
tx

i
t∑

i∈Et
pi

t

. (13)

Almost sure convergence ofpi
t to 1 as t ↑ ∞ for the

best expert1 was established under the assumption that the
distribution ofI{i ∈ Et}, t ≥ 0, is stationary and symmetric in
i. The latter condition is necessitated by the fact that otherwise
the frequency with which an experti participates (i.e.,i ∈ Et)
influences her rating, favoring in particular the experts who
participate more often. This is not desirable in most situations,
for the best experts may opine only occasionally. On the other
hand, the above fix of assuming a symmetric participation

1if unique, the scheme oscillates between best experts otherwise.



may also be unreasonable. Motivated by this, we propose an
alternative scheme as follows:

pi
t+1 = Γ

(
pi

t

[
1 + a(ν(i, t))I{i ∈ Et}wi

t

−
∑

j

a(ν(j, t))I{j ∈ Et}pj
tw

j
t )

])
,

(14)

where wj
t := ytx

j
t + (1 − xj

t )(1 − yt) and ν(j, t) :=∑t
m=0 I{j ∈ Em}. Γ(·) is the projection onto thed-

dimensional probability simplexS. Also yt need not be
binary any more, it can take any value in[0, 1]. We shall
assumeEt to be i.i.d. Let zi := E[wi

t], 1 ≤ i ≤ d, and
without loss of generality, letz1 > zj , j 6= 1. What we
have done is to replace the multiplicative scaling in (12)
by an additive normalization, thereby replacing ratios of
expressions involving indicator random variables by additive
counterparts thereof that are easier to analyze. This scheme
does not have the interpretation of a network algorithm as in
the preceding section because it is only one entity polling the
rest. Nevertheless, we have picked this example because it is
a simple and clear instance where sampling bias is a ‘clear
and present danger’.

By definition it is clear thatwi
t takes a high value ifxi

t

and yt are ‘similar’, that is the value ofwi
t is large if both

xi
t andyt are high or both of them are low. And so it seems

reasonable to say that a good expert must have a high value
of zi. We use this observation to define a convention - an
expert i is better than an expertj if zi > zj . And thus in
our model expert 1 is the best expert (asz1 > zj , j 6= 1). We
have the following result:

Theorem 2 p1
t

t↑∞→ 1 a.s.

Proof SinceS is bounded, (3) is free. Arguing as in [2], the
limiting o.d.e. is

ṗi(t) = cpi(t)

zi −
∑

j

pj(t)zj

 , 1 ≤ i ≤ d, (15)

for some c > 0. This is a special case of the celebrated
replicator dynamics of mathematical biology and is seen to
converge to the Dirac measure at1. (See, e.g., the proof
of Lemma 4, p. 14, of [4], which in fact considers a more
complicated situation.) It may be noted that while the analysis
of the preceding section is for a scheme without the projection
operatorΓ, this makes no difference for following reasons: All
one needs to do is to replace the limiting o.d.e. by its projected
version (see section 5.4 of [3]), which in the present case is
exactly the same as the original o.d.e. because the simplexS
is invariant under this o.d.e. 2

IV. N UMERICAL EXPERIMENTS

In this section we present some simulation results for the
reputation system considered in section III that verify the
theoretical result that we have proved in Section III, Theorem

2. Several cases were considered and all were consistent with
Theorem 2. Two cases with figures depicting convergence of
pi’s are displayed below.

In the simulations, we label the iterations by indexn ≥ 0
and thusn plays the role oft. For a giveni, we generate
I(i ∈ En) in an i.i.d. fashion for differenti. For projection
Γ, in simulations we use a slight modification followed by
normalization

First calculate,pi(n + 1) = max(ε, Y ), ∀i,

And then normalize,pi(n + 1) =
pi(n + 1)∑
j pj(n + 1)

, (16)

where Y denotes the argument ofΓ in RHS of (14) with
n replacing t and ε = 10−6 is a small number to prevent
the algorithm from accidentally getting stuck at a lower
dimensional face of the probability simplex (Note that these
are invariant sets for the iteration). For clarity we depict the
variation of pi against iterations for only three experts with
largest zi values. Using the convention that an experti is
better than expertj if zi > zj , we call these three experts
as ‘Best 3 Experts’. If required, we refer to the unique best
expert as experti∗. We also defineνi := E(I(i ∈ En)) (note
the close relation toν(i, t)).

The convergence rate ofpi∗(n) to 1 depends upon values
of zi∗ andνi∗ relative to otherzi’s andνi’s resp. and can be
boosted by changing the step size schedule froma(n) = 1

n
to a(n) = 1

[n/K]+1 where [x] denotes greatest integer not
greater than x and K is a suitably chosen large integer. We
use the modified step schedule withK = 100 for both cases.
This schedule continues to satisfy conditions (2), but has a
slower decrease, leading to faster convergence at the expense
of somewhat higher fluctuations. (This is a standard trade-off
in stochastic approximation.) We provide two figures for
each case, one of them depicting transience (and fluctutations
because of the modification for faster convergence) and other
showing the convergence result.

Case 1For a reputation system with 20 experts, we generate
xi(n)’s andy(n) as independent random variables uniformly
distributed in [0, 1] with randomly pre-assigned means. Fig.
1 shows thatpi∗(n) is far from 1 becausei∗ has not opined
sufficient number of times to be identified as the best expert.
While Fig. 2 shows that finally the iterates converge to Dirac
measure 1, with value 1 for the expert with highestzi, though
νi∗ is ‘approximately half’ of the second best expert.

Case 2 We simulate a reputation system with 10 experts.
Here, we directly generatewi’s. Thezi values are pre-assigned
deterministically with one best experti∗ such thatzi∗ =
2zi, ∀i 6= i∗. However, the best expert is ‘10 times less likely’
to opine than any other expert. That is,νi∗ = 1

10νi,∀i 6= i∗.
We assign such ratios to demonstrate that the algorithm is in
fact successful in removing the sampling bias. Fig. 3 shows
that initially there are great fluctuations but eventuallypi∗(n)



does converge to 1 as evident from Fig. 4. As compared to
the previous case, the number of iterations for convergence are
much larger because of the ‘very rare’ opining by the ‘best
expert’ .

Fig. 1. Case 1: Transient Behavior of Best 3 Experts’ Reputation

Fig. 2. Case 1: Steady State Behavior of Best 3 Experts’ Reputation

V. REMARKS

1) The i.i.d. assumption on{Et} may be relaxed to sta-
tionarity using the results on ‘stochastic approximation
with stationary noise’ from [10]. In fact, one can drop
even stationarity as long as (7) holds (cf. [2]).

2) Algorithms based on replicator dynamics have been
used extensively in communication networks (see, e.g.,
[5]). A closer connection here is with the celebrated
‘multiplicative rule’ algorithm in machine learning [1],
whose normalized version leads to a replicator dynamics
as argued in [9].

3) Several different cases were simulated and all gave
consistent results as per Theorem 2. In Case 1 as well
as Case 2, different number of experts such as 50,
100 etc. were considered. Furthermore, many randomly

Fig. 3. Case 2: Transient Behavior of Best 3 Experts’ Reputation

Fig. 4. Case 2: Steady State Behavior of Best 3 Experts’ Reputation

generated tuples ofz andν were also considered among
variants of Case 2. In all cases, given sufficient number
of iterations,pi∗(n) converged to 1. Obviously if the
best expert has a highνi compared to other experts, the
convergence is very fast.

VI. CONCLUSIONS

Online recommendation systems use votes from experts
(read other users) to recommend objects to a particular
customer (say, Anju) . They rely on matching taste, likes
and dislikes of different experts with Anju and updating
their reputation (read rating) depending on the extent of
matching. Several existing schemes depend on different
assumptions such as equally likely availability of experts at
all times, presence of a good number of objects, voting by
different users on a large number of objects, etc. Our scheme
presented in Section III does not need such assumptions
and successfully identifies the best expert. With a judicious
modification in the step size schedule, we are able to handle
infrequent opining of a good expert. With an update rule as
given by (14), if an expert is better than any other expert, his



reputation will eventually take over everyone else’s reputation,
and so for further advice, Anju can rely on this best expert
alone. All we need is the experts to opine ‘comparably often’
in the sense of (7), which is a reasonable assumption.

As already mentioned, we picked an off-the-shelf problem
from [11] for illustrative purposes. More generally we can
consider a network of agents collectively rating each other,
a framework that could be of relevance in, e.g., a ‘social
networking’ environment.

Another problem that naturally suggests itself is that of
tracking the ‘current best’ expert when the competence of
experts is time varying. Unlike the regime switching models
in econometrics, we do not expect such a change to be abrupt
(unless we allow for arrivals and departures of experts), so
it falls within the ambit of the classical tracking problem
for which there is a classical fix. One simply replaces the
slowly decreasing stepsizea(n) by a constant stpsizea > 0.
The interpretation of stochastic approximation as a noisy
discretization of an o.d.e. suggests that the stepsize should be
viewed as a discrete time step that determines the time scale
of the iteration. Thus the algorithm with a decreasing stepsize
becomes slower with time, eventually becoming too slow to
track the slowly varying environment. This prompts the use of
a constant stepsize for such applications. One loses, however,
the advantages of a decreasing stepsize, viz., asymptotic
suppression of errors and fluctuations due to discretization
and noise. Thus a higher constant stepsizea would mean
faster algorithm but with greater fluctuations. Therefore the
stepsize has to be chosen judiciously: large enough to ensure
a time scale faster than that of the environmental drift, small
enough that the fluctuations do not become overwhelming.
This fix, however, does not work in the present case because
constant stepsize will not satisfy the additional hypotheses we
imposed for removing the sampling bias, so the bias is back
in. One way out is to keep tab on relative frequencies ofi− j
interactions and compensate accordingly, which becomes
cumbersome. A better way seems to be do what we have
done above with decreasing stepsize and reset occasionally,
e.g., when the stepsize drops below a threshold.

An important potential application, right now still
on the distant horizon, is networked control. Stochastic
approximation and its variants have been extensively used
in adaptive control [6], a networked variant of which would
immediately land us with the kind of issues considered above.

On the theoretical side, there are some interesting issues.
Since we are only interested in relative ranking of the experts,
this is anordinal optimization problem [7]. As is characteristic
of such problems, while the convergence of the algorithm
may be slow, the relative ranking of its components becomes
apparent much faster. This calls for a finite time analysis to
establish the ‘probably approximately correct’ behavior of the
scheme. Also, there may be constraints on how often a given

expert can be polled or costs associated with such an act. This
makes polling strategic, turning it into a stochastic control
problem.
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