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Abstract
Consider an infinite sequence of independent, uniformly chosen points from [0, 1]d .
After looking at each point in the sequence, an overseer is allowed to either keep it
or reject it, and this choice may depend on the locations of all previously kept points.
However, the overseer must keep at least one of every two consecutive points. We call
a sequence generated in this fashion a two-thinning sequence. Here, the purpose of the
overseer is to control the discrepancy of the empirical distribution of points, that is,
after selecting n points, to reduce the maximal deviation of the number of points inside
any axis-parallel hyper-rectangle of volume A from nA. Our main result is an explicit
low complexity two-thinning strategy which guarantees discrepancy of O(log2d+1 n)

for all n with high probability [compare with �(
√
n log log n) without thinning]. The

case d = 1 of this result answers a question of Benjamini. We also extend the con-
struction to achieve the same asymptotic bound for (1+β)-thinning, a set-up in which
rejecting is only allowed with probability β independently for each point. In addition,
we suggest an improved and simplified strategy which we conjecture to guarantee dis-
crepancy of O(logd+1 n) [compare with θ(logd n), the best known construction of a
low discrepancy sequence]. Finally, we provide theoretical and empirical evidence for
our conjecture, and provide simulations supporting the viability of our construction
for applications.
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104 R. Dwivedi et al.

1 Introduction

Let (�,F , μ) be a probability space and let R be a class of subsets of �. The R-
discrepancy of S, a subset of � of size n, with respect to μ is defined as

DisR(S) := sup
R∈R

∣
∣
∣ |S ∩ R| − nμ(R)

∣
∣
∣.

Let X = {Xn}n∈N be a sequence of elements in �, and write Xn = {Xi }i∈[n]. The
discrepancy of X is defined as the sequence of discrepancies {DisR(Xn)}n∈N.

Throughout we consider only with R-discrepancy with respect to Lebesgue mea-
sure on � = [0, 1]d , where R = {⊗d

i=1[ai , bi ) ⊆ [0, 1)d : 0 ≤ ai < bi ≤ 1} are the
axis aligned hyper-rectangles. For brevity we call this simply discrepancy, and denote
Dis(Xn) = DisR(Xn).

Currently, the best-known low-discrepancy sequence X achieve Dis(Xn) =
O(logd n) and several lattice related constructions are known (see, e.g. [1]). How-
ever, in many applications only restricted control over the locations of the points Xn is
available so that an optimal discrepancy sequence cannot be used. The most extreme
case is theMonte-Carlo setting, where the points are independent samples of the uni-
form distribution over [0, 1)d . In this case classical results in probability theory imply
that Dis(Xn) = O(

√
n log log n) and that this estimate is tight. Due to the signifi-

cant gap between the optimal discrepancy obtainable by an infinite sequence and the
discrepancy of a sequence of independent samples it has been desirable to look for
variations on the Monte-Carlo setting which obtain lower discrepancy by allowing an
overseer mild control over the sequence X . The most well known result in this line
of investigation is the “power of two-choices” paper, by Azar–Broder–Karlin–Upfal
[2], who show that in the setting of � = [N ], uniform μ and R = {{n} : n ∈ [N ]},
by allowing the overseer to choose Xn among two i.i.d. μ-distributed samples it is
possible to obtain an exponential improvement in the discrepancy.

In this work we investigate a related, weaker sense of control. Consider an infinite
sequenceU∞

1 := {Un}n∈N of i.i.d. uniform random variables on [0, 1)d . These points
are shown to an overseer one by one, who may depend on his past choices in decid-
ing whether to keep each point or reject it. However his control is restricted by the
constraint of keeping at least one of every two consecutive points. We call a strategy
executed by the overseer in producing such a sequence a two-thinning strategy. We
also consider an even weaker setting, in which, in addition to the restriction of a two-
thinning, each point has independent probability β to be rejectable and otherwise it
must be kept. Inspired by the work of Peres–Talwar–Wieder [3] on (1+β)-choices, we
call this setting (1 + β)-thinning. More precise definitions of the above terminology
are provided in Sect. 3.

Our main result is an explicit (1 + β)-thinning strategy on Unif[0, 1)d , which we
call Haar strategy. This strategy exploits the orthogonal structure of Haar functions,
to achieve the following.
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The power of online thinning in reducing discrepancy 105

Theorem 1 The Haar (1 + β)-thinning strategy yields a sequence Z which almost
surely satisfies

lim sup
n→∞

Dis(Zn)

log2d+1(n)
≤ 100(d2 + 1)

β
.

This result is obtained as an immediate consequence of the following more detailed
theorem.

Theorem 2 The Haar (1 + β)-thinning strategy yields a sequence Z which for all
n ∈ N and � > 0 satisfies

P

(

Dis(Zn) ≥ β−1 log2d(n)(� + 1000 + 100d2 log n)
)

≤ β−2e− �
50 .

Moreover, in order to apply this strategy the overseer requires O(n logd n) memory
and O(n logd n) computations to produce the first n samples.

In Sect. 6 we suggest a heuristic improvement of our analysis, bringing us to make
the following conjecture.

Conjecture 1 The Haar (1 + β)-thinning strategy yields a sequence Z that almost
surely satisfies

lim sup
n→∞

Dis(Zn)

log3d/2+1(n)
< ∞.

In the same section we also suggest a simplified strategy with the same complexity
which we call greedy-Haar strategy, which we conjecture to provide an additional
improvement over the result above. Namely

Conjecture 2 The greedy-Haar (1 + β)-thinning strategy yields a sequence Z that
almost surely satisfies

lim sup
n→∞

Dis(Zn)

logd+1(n)
< ∞.

This should be compared with the best known deterministic construction of a low
discrepancy sequencewhichyields a discrepancyof�(logd(n)). For further discussion
on the relation between there results and discrepancy theory, see Sect. 2.3.

To demonstrate that our constructions are also viable in practice as an alternative
for Monte-Carlo i.i.d. sampling we dedicate Sect. 7 to simulations, comparing the per-
formance of our strategies with classical Monte-Carlo discrepancy. Further discussion
on the potential applications of our results in statistics is provided in Sect. 2.4.
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106 R. Dwivedi et al.

Both algorithms suggested in this paper utilize the complex structure of Haar
wavelets. It is natural to ask whether an algorithmwhich relies only on the discrepancy
of various sets in [0, 1] is capable of obtaining comparable discrepancy. One possible
such algorithm in the two-choices setting is the one that given two points X and Y ,
compares the worst discrepancy among sets which contain either X or Y but not both,
and picks the point whose selection would minimize that discrepancy. In a sense this
algorithm is a natural analogue of the optimal algorithm for the balls and bins setting
mentioned in Sect. 2.1. Note, however, that computing the discrepancy is a non-trival
computation problem (as is evident from Sect. 7), so that even if such an algorithm
was available, it would not necessarily be more useful in practice.

1.1 Overview

Let us begin by providing an overview of the Haar (1 + β)-thinning strategy in one-
dimension. consider

Ih =
{[

a

2�
,
a + 1

2�

]

: � ≤ h, 0 ≤ a < 2�

}

,

the set of diadic intervals of order at most h in [0, 1]. We partition each such interval
I into two disjoint intervals of equal length Ileft < Iright. We say that two points are
on the same side of I if they are either both on Ileft or on Iright, and otherwise we say
that they are on opposite sides.

Given the n-th point x ∈ [0, 1], the overseer computes the number of intervals I in
Ih for h = 
log n�, such that the number of points among Z1, . . . Zn−1 on the same
side as x on I is greater than number of points which are on the opposite side, counting
draws as half. Denote this number by k. The overseer then rejects x with probability
βk
h .
The analysis of this strategy, relies on the fact that for each I the probability that

the next point will improve the balance between Ileft and Iright is greater than the
probability that it will reduce this balance by a margin of β

h . This inclines the process
towards balancing the load between the two sides of every such interval. We then
use the fact that every diadic interval is well balanced to deduce that the empirical
distribution of points has low discrepancy.

In higher dimensions the set of functions Ih is replaced by the collection of Haar
wavelets of order up to h. This is an orthogonal system of functions which partition
each d-dimensional rectangle into two equal parts with similar functionality to that of
Ileft and Iright. The general construction is given in full details in Sect. 5.

2 Related work

In this section we briefly survey related work on the power of two-choices and dis-
crepancy theory and present possible applications of our work to numerical integration
and statistics.
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The power of online thinning in reducing discrepancy 107

2.1 Two-choices and weaker forms of choices

The power of two choices is a phenomenon discovered and popularized by Azar,
Broder, Karlin and Upfal [2], who consider a setting in which the underlying space
is the discrete set [M] = {1, . . . , M} and the discrepancy is measured with respect
to R = {{m} : m ∈ [M]}. Thinking of the points Z1, . . . ZN as balls and of their
values in [M] as bins, the authors considered a process where at each step a ball is
assigned to the least occupied among two bins chosen uniformly and independently.
They show that when N = �(M) this yields with high probability a discrepancy
of DisR(ZN ) = (1 + o(1)) (log log N/ log 2) (compare with DisR(UN ) = (1 +
o(1)) (log N/ log log N ) when Ui are i.i.d. uniform). When N � M their results
imply that P(DisR(ZN ) > �logM) decays exponentially fast in �, uniformly in N ,
so that the discrepancy does not grow with N . In addition, in this model, the load
of a typical bin deviates from N/M by merely a constant (compare with a typical
deviation of �(

√
N/M) and DisR(UN ) = �(

√
N logM/M) for Ui i.i.d. uniform).

It was later discovered that these results are tight up to a constant in the exponent (see
e.g. [3]). Note, however, that significantly better iterated log bounds were obtained by
Berenbrink, Czumaj, Steger and Vöcking [4] for the one-sided gap between the load of
the most loaded bin and the average load. For a simpler proof see Talwar and Wieder
[5].

While considering applications of the power of two choices to queuing theory,
Mitzenmacher, in his thesis [6], suggested the following more robust setting of “two-
choices with errors”. Peres, Talwar and Wieder [3] later formulated this process,
defining the equivalent (1 + β)-choices process for β ∈ [0, 1]. In this process, with
probability β (independent of everything else) the overseer is offered two uniformly
distributed independent bins and with probability (1−β) only one such bin is offered
and no choice is allowed. (1 + β)-thinning processes are closely related to (1 + β)-
choices processes. In fact, a two-thinning set-up is equivalent to the corresponding
two-choices set-up where the overseer is oblivious to the second available bin. Extend-
ing this argument, we see that every (1 + β)-thinning processes is a (1 + β)-choices
process (i.e. every process that could be realized by a (1+ β)-thinning strategy could
also be realized by a (1 + β)-choices strategy). On the other hand, Proposition 3.1
below guarantees that every (1+β)-choices process for β ≤ 1

2 is a (1+ 2β)-thinning
process. As Theorems 1 and 2 are obtained for (1 + β)-thinning processes with arbi-
trarily small β, they are also valid in the (1 + β)-choices setting.

In the balls and bins setting, both (1 + β)-choices processes and (1 + β)-thinning
processes achieve the same asymptotic discrepancy of �(logM) when N � M ,
the same discrepancy that could be achieved by a two-choices process (this follows
from results of [3]). On the other hand, if one measures discrepancy by the one-sided
maximal load semi-norm given by

max
i∈[M] #{n ∈ [N ] : ξ(n) = i} − N/M,

thenBerenbrink,Czumaj, Steger andVöcking [4] show that two-choices process can, in
fact, achieve �(log logM), while both (1+ β)-choices process and (1+ β)-thinning
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108 R. Dwivedi et al.

processes still achieve only �(logM) (again by [3]). A similar gap between two
choices, (1 + β)-choices and (1 + β)-thinning for β < 1 exists also in the regime
N  M , and in this regime both notions obtain no significant improvement over a
no-choice setting. Curiously, when β = 1, the optimal discrepancy obtainable by two-
thinning strategy is�(

√
log N/ log log N )which is strictly between the discrepancy in

the no-choice setting, which is �(log N/ log log N ) and the optimum in the 2-choice
setting which is �(log log N ). This is shown in a separate recent note by the second
and third author [7].

2.2 Interval subdivision processes

The case � = [0, 1] of our result relates to a long line of investigation of so called
interval subdivision processes.

An interval subdivision process is a sequence of points (Xi )
∞
i=1 where Xi ∈ [0, 1].

The intervals of the process at the n-th step are the gaps between adjacent points in
(Xi )

n
i=1, while the empirical measure at that step is defined as

1
n

∑n−1
i=0 δXi , where δ j

is the Dirac delta measure. When the points are chosen independently according to the
uniform distribution on [0, 1] we call this the uniform interval subdivision process.
By the law of large numbers, the empirical measure of this process converges to the
uniform measure almost surely as n tends to infinity.

In 1975 Kakutani [8] suggested a couple of alternative models for interval subdivi-
sion which he conjectured to bemore regular then the uniform process in the sense that
their empirical measures should converge to the uniform distribution more rapidly. In
one of these processes, which we refer to here as theKakutani process, the n-th point is
selected uniformly on the largest interval (observe that there are no ties almost surely).
Kakutani conjectured that the empirical measure of the Kakutani process converges to
the uniform measure. This fact was later proved by van Zwet in [9] and independently
by Lootgieter in [10]. Once convergence was established it remained to recover in
what sense the Kakutani process is more regular than the i.i.d. uniform subdivision.

One natural measure for regularity of the convergence of the empirical measure is
the discrepancy of the sequence. A classical result of Kolmogorov and Smirnov (com-
municated by Donsker [11]), implies that the difference between t and the empirical
measure of interval [0, t] of the uniform interval subdivision process, normalized by
a factor of

√
n converges to the standard Brownian bridge. Hence, the discrepancy of

the uniform interval subdivision process is of order �(
√
n). However, the the interval

variation discrepancy of the Kakutani process was not easy to handle, and in the 1980s
other properties of the process have been studied (see [12]). Analysis of the interval
variation discrepancy was made possible only in 2004 when Pyke and van Zwet [13]
were able to compute the empirical process of the Kakutani process and showed that
the difference between t and the empirical measure of the process on the interval
[0, t], normalized by a factor of

√
n, converges to a Brownian bridge with half the

standard deviation. In particular, this implied that the Kakutani process achieves an
improvement of merely a constant factor in the interval variation discrepancy over the
uniform interval subdivision process.
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The power of online thinning in reducing discrepancy 109

Circa 2014, Benjamini (see [14] and [15]) suggested investigating how a two-
choices variant of the uniform interval subdivision process behaves, and in particular
what is the minimal discrepancy achievable by such a process. One family of algo-
rithms which Benjamini suggested are local algorithms, namely ones in which the
player considers only the size of the intervals which contain the new sampled points.
Two natural examples being max-2 and furthest-2 whose respective descriptions are
“pick the point located in the larger interval” and “pick the point furthest from all
previously chosen points”.

Following the work of Maillard and Paquette [14] who studied other properties
of the max-2 process, Junge [15] showed that the empirical measure of the max-2
process indeed converges to the uniform measure. However, both simulations and
comparison with Kakutani processes indicate that max-2 is likely to be at most as
regular as the Kakutani process, thus demonstrating discrepancy of �(

√
n). This has

been the primary instigator of our present work, where we show that that even in the
weaker setting of (1+β)-thinning, by adopting a global strategy the player can obtain
a near optimal interval variation discrepancy of O(log3 n).

2.3 Discrepancy theory

Discrepancy theory is the study of discrete objects which imitate regularity properties
of a continuous counterpart. This theory has, in fact, originated at the study of low
discrepancy sequences with respect to the uniform measure on [0, 1)d , the very object
investigated here. Traditionally, this theory is concerned with deterministic objects,
trying to obtain bounds on the lowest discrepancy possible for prefixes X1, . . . , Xn of
a sequence X = {Xi }i∈N of points in [0, 1)d .

In d ≥ 2 the exact optimal asymptotic behavior of the discrepancy is unknown.
There exist explicit constructions of sequences X whose discrepancy is Dis(Xn) ≤
Cd logd n while for every sequence X it is known (by [16]) that there exist infinitely
many n-s which satisfyDis(Xn) ≥ cd log(d+1+γd )/2(n), where and cd ,Cd , γd ∈ (0, 1)
are constants depending on dimension.

One way to obtain a sequence which achieves the best known upper bound is to
take L , the d + 1-dimensional integer lattice stretched and rotated by suitably chosen
linear transformation. Denoting by p the natural projection of these points to their first
d coordinates, one generates the sequence by taking the points p(x) for x ∈ L , which
satisfy p(x) ∈ [0, 1]d , ordered by the absolute value of their last coordinate. Such a
construction is called a lattice rule. The upper bound is also achieved using various
digital nets—for example, Hammersley point sets which are based on the infinite
van der Corput sequence (see, e.g. [1]). The lower bounds were obtained by Bilyk,
Lacey and Vagharshakyan [16], building upon the work of Roth [17]. We remark that
arguments involving Haar wavelets, which play a key role in our construction, are
used to prove lower bounds in classical literature (see, e.g. Ch. 3 of the book [18]).
While there seem to be no prior work involving Haar wavelets as a tool for obtaining
computationally-efficient constructive upper bounds, there exist recent works [19–21]
which use the related Walsh wavelets to control an L2 notion of discrepancy (weaker
than the L∞ notion we consider).
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110 R. Dwivedi et al.

Discrepancy theory is the main motivation for Conjecture 2, as this conjecture
would establish that online thinning typically achieves discrepancy which deviates by
merely a factor of log n from the minimal discrepancy of any infinite sequence.

2.4 Applications

In this section we list a few potential applications of our results. It is important to
notice that our output sequence has the desirable property that it is unbiased. This is
expressed in the following claim.

Claim 2.1 Let Z be the output sequence of either the Haar (1 + β)-thinning strategy
or the greedy-Haar (1 + β)-thinning strategy. Then for any integrable f we have

E

[

1

n

n
∑

i=1

f (Zi )

]

=
∫

[0,1)d
f (x)dx .

We postpone the proof of this claim to Sect. 5.4. Next, we divide the description of
potential applications to one-dimensional and multi-dimensional.

One dimensional applications to statistics Our results could be used to obtain
a new method for on-line sample thinning in statistics. Typically, thinning is not
an effective practice in statistics. However, there are settings in which it is actually
beneficial. Tomake this concrete lets us illustrate the application of ourmethod through
an example from botany. Consider a setting in which a researcher wishes to assess the
expectation of a parameter Y - the amount of a certain bacteria on a type of wild plants.
It is well known that Y is strongly dependent in an unknown yet smooth way on the
mass of the sampled plant, a well studied parameter which we denote by X . To obtain
Y the researcher must harvest the plant, keep it in cold storage and run an expensive
procedure, hence it is much more costly to assess Y for any particular sample than
to measure X . The researcher now travels in the jungle and measures X for different
plants, he can then either discard them or keep them for measuring Y . By applying
our results to the percentile distribution of X (which is uniform by definition), we
can thin an arbitrarily low percentage of our samples on-line and obtain an empirical
percentile distribution of the samples of X which has discrepancy of O(log3 n) rather
than O(

√
n) discrepancy without any thinning. As a result the average of sampled

Y will suffer from less variance caused by the variance of the sampled values of X .
Hence the researcher will be able to obtain better precision for a given cost. Notice
that by Claim 2.1 this method will not create any bias in the estimate of E(Y ).

Other settings in which a similar application is viable include experimental agri-
culture, where an organism (a plant or an animal) is raised and the parameter X could
be assessed at a much earlier stage of growth in comparison with Y and Monte-carlo
simulations in which Y is obtained from X by heavy computations. To read more on
the benefit of thinning for Markov chain Monte-carlo (MCMC) samplers in a similar
setting, see a recent work by Owen [22].

Multi-dimensional applications While the law of large numbers guarantees that
a sequence of n independent uniform random variables converges to the uniform
distribution, the rate of this convergence is often slower than desired for practical
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The power of online thinning in reducing discrepancy 111

applications. One setting where this is the case is that of Monte-Carlo numeri-
cal integration. In this setting one approximates an intractable continuous integral
∫

f (x)dx by a discrete average 1
n

∑n
i=1 f (Ui ) for uniform Ui . For any arbitrary

point sequence P , and compact subset F of a Banach space, Holder’s inequality
implies that | 1n

∑n
i=1 f (Pi ) − ∫ f (x)dx | ≤ sup f ∈F 1

n ‖ f ‖Dis(Pn
1 ) for appropriate

norms ‖ · ‖ that measure variation of functions. This is called the “Koksma-Hlawka”
inequality when discrepancy is measured by axis-aligned rectangles and the functions
have bounded “Hardy–Krause” variation (bounded mixed partial derivatives). Since
Dis(Un) = �(

√
n), the Monte-Carlo sum converges at a 1/

√
n rate to the integral.

One can achieve a much better rate of convergence by replacing random i.i.d.
sequences by non-i.i.d. random sequence or even by a deterministic pseudo-random
sequence that has lower asymptotic discrepancy than Un

1 . As a result the theory of
numerical andQuasi-Monte-Carlo (QMC) integration have found applications to sev-
eral results from discrepancy theory. Formore details on bounds related to discrepancy
theory and QMC, readers may refer to the books [18,23,24] and the surveys [25,26]
and the references therein.

Our sampling algorithm also provides an unbiased estimate for the integral (by
Claim 2.1). While the discrepancy and complexity of the algorithm are not as good
as low discrepancy methods such as digital nets, it has the benefit of working even
in settings where one cannot choose the points at which the function is evaluated.
Moreover the output sequence has less structure than lattice based constructions.

Finally, we remark that in applications in which actual thinning is undesirable, one
can apply a variant of the algorithm: rather than discarding a point with probability
1− β, the overseer assigns a weight of 1− β to that point, while keeping weight 1 to
all other points. Our results appear to extend to this case, achieving the same bounds
on the process’s asymptotic (weighted) discrepancy.

3 Preliminaries

In this section we formally define (1+β)-thinning strategies, and related notions that
are useful for our proofs. We then give a sufficient condition that describes which
distributions can be realized by a single step of (1 + β)-thinning, and provide a few
technical lemmata required to prove Theorem 2. Throughout we follow the convention
that the notation log denotes the logarithm with base 2.

3.1 Thinning functions and strategies

A thinning function is ameasurable function f : [0, 1)d → [0, 1].We thinkof the input
of such a function as a random element in [0, 1)d , and of its output as the probability
that we decide to keep the chosen element. Formally, given X1, X2 ∈ [0, 1)d and an
independent U1 ∼ Unif[0, 1), we let Z ′ be equal to X1 if U1 ≤ f (X1) and equal to
X2 otherwise. We call Z1 the two-thinned sample produced by f .

A two-thinning strategy is an instrument instructing the overseer how to choose a
thinning function to produce Zn given Z1, . . . , Zn−1. Formally, such a strategy is a

123
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countable collection of measurable functions fn : ([0, 1)d)n−1 × [0, 1)d → [0, 1],
such that for every fixed value of the first n − 1 entries, the function on the last entry
is a thinning function.

A two-thinning strategy is applied to produce a random two-thinning sequence in the
following way. Denote by X a sequence of i.i.d. uniform random variables on [0, 1)d .
We now inductively define Z as a subsequence of X produced by the strategy. To do
so, we shall employ U = {Un}n∈N a sequence of i.i.d. Unif[0, 1] random variables,
independent from everything else, serving as an external source of randomness. Given
Z1, . . . , Zn−1, inductively define

χn = 1
{

Un > fn((Z1, . . . , Zn−1), Xn+∑n−1
i=1 χi

)
}

.

Here, χn represents the decision whether to reject (1) or keep (0) in the n-th step so that∑n
i=1 χi is the number of rejections made by our algorithm in the process of allocating

the first n balls. Using these we set Zn = Xn+∑n
i=1 χi

. Observe that, conditioned on
Z1, . . . , Zn−1, the variable Zn indeed has the distribution of a two-thinning sample
according to f (·) = fn((Z1, . . . , Zn−1), ·).

3.2 (1+ ˇ)-thinning strategy

Given a fixed β ≤ 1, a thinning function f satisfying f ≥ 1−β almost surely is called
a (1 + β)-thinning function and a two-thinning sample of such a function is called
a (1 + β)-thinned sample. A (1 + β)-thinning strategy is a two-thinning strategy
which, for every given Z1, . . . , Zn−1, satisfies that f (x) = fn((Z1, . . . , Zn−1), x)
is an (1 + β)-thinning function. Observe that such a strategy rejects each sample,
conditioned on the past, with probability at most β and that the case β = 1 coincides
with our previous definitions.

3.3 Distribution realization via (1+ ˇ)-thinning

In this section we provide a sufficient condition for a distribution on [0, 1)d to be
realizable as a (1 + β)-thinned sample.

Proposition 3.1 Let μ be an absolutely continuous probability measure on [0, 1)d
whose density g satisfies

1 − β

2
≤ g(x) ≤ 1 + β

2
.

Then, f (x) = g(x) − β
2 defines a (1 + β)-thinning function whose

(1 + β)-thinned sample is distributed according to μ.

Proof Let X1, X2 ∼ Unif([0, 1)d) and U1 ∼ Unif([0, 1]), independent from one
another and let Z ′ be equal to X1 if U1 ≤ f (X1) and to X2 otherwise, so that Z ′ is a
(1 + β)-thinned sample of f . We compute
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P(Z ′ ∈ A) = P

(

X1 ∈ A,U1 ≤ f (X1)
)

+ P

(

X2 ∈ A,U1 > f (X1)
)

=
∫

A

(

g(z) − β

2

)

dz +
∫

[0,1)d

(

1 − g(z) + β

2

)

dz · |A|

=
(

μ(A) − β

2
|A|
)

+
(

1 − 1 + β

2

)

|A| = μ(A),

where |A| is the Lebesgue measure of A. The proposition follows. ��
Proposition 3.1 is pivotal in the indirect constructions of this paper.Rather than describ-
ing thinning functions we shall describe a discrete time stochastic process on [0, 1)d
whose n-th entry represents the location of the n-th ball. We then show that almost
surely at every step the distribution of the next ball is realizable as a (1 + β)-thinned
sample for some easily computable f .

3.4 Processes defined via a conditional density function

Let (�,F) be themeasurable space on ([0, 1)d)N with the sigma field generated by the
cylindrical Borel topology. We call an (�,F)-measurable random variable a discrete
time process on [0, 1)d . Each process Z = {Zn}n∈N of this sort is associated with a
counting process ν = {νn}n∈N defined by νn = ∑n

i=1 δZi where δx is a dirac delta
measure at x . We will only concern ourselves with processes whose counting measure
ν is Markovian. That is,

νn | ν1, . . . , νn−1
d= νn | νn−1.

These are processes satisfying that the distribution of Zn depends only on the overall
locations of the previous n − 1 balls, and not on their order.

One way to construct an exchangeable discrete time process on [0, 1)d is via a
conditional density function, which we define as sequence of measurable functions
λn(ν), each of which takes as input a counting measure of n elements in [0, 1)d and
produces a density function λn of a probability measure on [0, 1)d . Given such λn , we
write

λA
n (ν) =

∫

A
λn(ν)(x)dx,

for every measurable A ⊂ [0, 1)d .
Given such a conditional density function λ, we define the process Z associated

with it by

P

(

Zn ∈ A
∣
∣
∣ {Zi }i<n

)

= λA
n (νn−1) . (1)

We call Z the process associated with counting measure ν and conditional density
λ.
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3.5 Balancing pairs

Let Z be a process on [0, 1)d associated with counting measure ν and conditional
density λ.

Given two disjoint sets A, B ⊂ [0, 1)d satisfying |A| = |B| = κ , we say that
Z is θ -balancing with respect to the pair {A, B} from time s ∈ N if almost surely,
κ ≤ λA

n + λB
n ≤ 3κ and

λA
n ≥ λB

n + θκ if νn(A) < νn(B),

λB
n ≥ λA

n + θκ if νn(B) < νn(A),
(2)

for all n ≥ s.
We now turn to show a key concentration property of balancing pairs. Assume that

Z is θ -balancing with respect to {A, B} from time s and let n ≥ s. By Eq. (1) we have,

P

(

Zn ∈ A
∣
∣
∣ {Zi }i<n, Zn ∈ A ∪ B, νn(B) < νn(A)

)

= λA
n (νn−1)

λA
n (νn−1) + λB

n (νn−1)

≤
1
2

(

λA
n (νn−1) + λB

n (νn−1) − θκ
)

λA
n (νn−1) + λB

n (νn−1)

= 1

2
− 1

2

θκ

λA
n (νn−1) + λB

n (νn−1)
≤ 1

2
− θ

6
. (3)

3.6 Concentration bounds for balancing processes

The following lemma shows that being θ -balancing with respect to a pair {A, B}
implies exponential concentration of the difference between the number of balls in A
and B. This is established using concentration inequalities, relying on bounding the
moment generating function.

Lemma 3.2 Let s ∈ N, 0 < θ < 1 and A, B ⊂ [0, 1)d be disjoint. If Z is a pro-
cess on [0, 1)d which is θ -balancing with respect to {A, B} from time s and satisfies

E

(

exp
(

θ
|νs (A)−νs (B)|

2

)) ≤ 150
θ2

, then for all n ≥ s we have

E

(

exp
(

θ
|νn(A) − νn(B)|

2

))

≤ 150

θ2
.

To show Lemma 3.2 we shall employ the following super-martingale type criterion.

Lemma 3.3 Let (Mk)k≥0 be random variables taking values in R+ which satisfy

E(Mk | Fk−1) ≤ αMk−1 + β
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for some 0 < α < 1, β > 0, where Fn = σ
(

(Mk)0≤k≤n
)

. Then

E(Mk) ≤
(

1 − αk
) β

1 − α
+ αk

E(M0) for all k.

Proof

E(Mk) = E(E(Mk | Fk−1)) ≤ αE(Mk−1) + β.

Using induction over k the lemma follows. ��

We are now ready to prove Lemma 3.2.

Proof of Lemma 3.2 Let A, B ⊂ [0, 1)d be disjoint, 0 < θ < 1 and s ∈ N, and assume
that Z is a process on [0, 1)d which is θ -balancing with respect to {A, B} from time
s, which satisfies

E

(

exp
(

θ
|νs(A) − νs(B)|

2

))

≤ 150

θ2
(4)

Writing Fn = σ
(

(Zk)0≤k≤n
)

, we observe that for any b > 0,

E

(

exp
(

θ
|νn(A) − νn(B)|

2

) ∣
∣
∣ exp

(

θ
|νn−1(A) − νn−1(B)|

2

)

= e
b·θ
2 ,Fn−1

)

≤ e
b·θ
2

(

1 − κ + κ

(
1 − θ/3

2
e

θ
2 + 1 + θ/3

2
e− θ

2

))

= e
b·θ
2

(

1 − κ + κ

(

cosh
θ

2
− θ

3
sinh

θ

2

))

≤ e
b·θ
2

(

1 − κ(1 − e− θ2
24 )

)

Where the first inequality follows from (3) and the last inequality uses a Taylor expan-
sion of cosh(x) and sinh(x).

For b = 0, we have

E

(

exp
(

θ
|νn(A) − νn(B)|

2

) ∣
∣
∣ exp

(

θ
|νn−1(A) − νn−1(B)|

2

)

= 1, Fn−1

)

≤ 1 − 3κ + 3κe
θ
2

≤ 1 − κ(1 − e−θ2/24) + 3κe
θ
2 .
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Using the above bounds, we obtain

E

(

exp
(

θ
|νn(A) − νn(B)|

2

) ∣
∣
∣ exp

(

θ
|νn−1(A) − νn−1(B)|

2

)

, Fn−1

)

≤ α

(

exp
(

θ
|νn−1(A) − νn−1(B)|

2

))

+ β

with α = 1 − κ(1 − e−θ2/24) and β = 3κe
θ
2 . Taking Mk = exp

(

θ
|νk(A)−νk (B)|

2

)

and

observing that for all n we have σ
(

(Mk)0≤k≤n
) ⊆ Fn , we apply Lemma 3.3 together

with (4) to get

E

(

exp
(

θ
|νn(A) − νn(B)|

2

))

< (1 − αn)
3κe

θ
2

κ(1 − e−θ2/24)

+ αn
E

(

exp
(

θ
|νs(A) − νs(B)|

2

))

<
150

θ2
.

��

We also make the following observation.

Observation 3.4 Let A1, . . . , Ak be a collection of random variables such that for all
i ∈ [k]we haveE(exp(cAi )) < C for some constants c,C. Then for any non-negative
a1, . . . , ak such that

∑k
i=1 ai ≤ 1, we have

E

(

exp
(

c
k
∑

i=1

ai A
i
)
)

< C .

Proof This is an immediate consequence of Jensen’s inequality and the convexity of
the exponential function. ��

Finally, we require the following estimate.

Observation 3.5 Let Z be a process on [0, 1)d , associated with a counting measure ν

and conditional density λwith λn(x) < 2 for all n, x. LetD ⊆ [0, 1)d be ameasurable
set. Then, for any s ∈ N, 0 < α < 1, we have

E(eα(νs (D)−ν0(D))) ≤ e4s|D|α

Proof If |D| > 1
2 , the inequality is straightforward. Otherwise, E(eα(νs−ν0)D) is

bounded from above by the moment generating function of Binomial distribution
with parameters s and 2|D|, which is (1 + 2|D|(eα − 1))s . Using the fact that
1 + x < ex < 1 + 2x for all x ∈ [0, 1], we bound this by e2s|D|(eα−1) ≤ e4s|D|α . ��
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4 Haar functions

In this section we provide tools from the theory of Haar wavelets that will be useful in
our construction. A diadic interval is an interval of the form I = [a2−�, (a + 1)2−�)

for �, a ∈ Z. We call � the order of I and write O(I ) = �.
Given a diadic interval I of order �, we define Ieven and Iodd as its left and right halves

– in particular, they are the unique diadic intervals satisfying O(Ieven) = O(Iodd) =
�+ 1, inf Ieven = inf I and sup Iodd = sup I . Each diadic interval I satisfying Ieven ⊂
[0, 1) is associated with a Haar function HI : [0, 1) → {−1, 0, 1} defined by

HI (x) =

⎧

⎪⎨

⎪⎩

1 x ∈ Ieven,

−1 x ∈ Iodd,

0 otherwise,

and we define the order of HI by O(HI ) = O(Ieven) = O(Iodd) = O(I ) + 1. It is
not hard to verify that Haar functions associated with different diadic intervals are
orthogonal with respect to the inner product 〈 f , g〉 := ∫[0,1)d f (t)g(t)dt , and that

they form an orthogonal basis for L2([0, 1]). This is known as theHaar wavelet basis.
Note that the functions here are not normalized so that 〈H , H〉 = |supp(H)| ≤ 1.
Also note that the indicator function of any diadic interval I of order � is orthogonal
to all Haar functions of order greater than �.

These notions generalize naturally to d > 1. A diadic rectangle R ⊂ R
d is the

cartesian product of diadic intervals I1 × · · · × Id . The Haar function HR : [0, 1)d →
{±1, 0} associated with this rectangle is HR = ∏d

i=1 HIi . The orders of these are
given by O(R) :=∑d

i=1O(Ii ) and O(HR) =∑d
i=1O(HIi ).

Write Hh1
h0

= {HR : h0 ≤ O(R) ≤ h1
}

for the set of diadic Haar functions on

[0, 1)d of order between h0 and h1. As before, Haar functions form the orthogonal
Haar wavelet basis of L2([0, 1]d). For a Haar function we also define

H+ := {x ∈ [0, 1)d : H(x) = 1} and H− := {x ∈ [0, 1)d : H(x) = −1},

so that 〈νt , H〉 = νt (H+) − νt (H−).

4.1 Writing arbitrary rectangles in terms of Haar functions

As mentioned in the overview (Sect. 1.1), our strategy maintains balance with respect
to all Haar functions up to a certain granularity in order to control the discrepancy
on arbitrary rectangles. To this end we first express every diadic rectangle as a linear
combination of Haar functions. We then use this construction to use Haar functions to
represent every rectangle whose corners are located on a lattice, and later to approxi-
mate any arbitrary rectangle.
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Proposition 4.1 For any diadic rectangle R in [0, 1)d of order � we have

1R =
∑

H∈H�
0

〈1R, H〉
〈H , H〉 H .

Moreover,
∑

H∈H�
0

∣
∣
∣
〈1R ,H〉
〈H ,H〉

∣
∣
∣ = 1.

Proof Since H∞
0 is an orthogonal basis for L2([0, 1]d), it would suffice to show that

〈1R, H ′〉 = 0 for all H ′ ∈ H∞
�+1.

To this end let H ′ be a Haar function of order greater than � and denote H =
∏d

i=1 Hi and R = ⊗d
i=1 Ii . Since O(H) > O(R) there must exist j ∈ [d] such

that O(Hj ) > O(I j ). As noted before, this implies that 〈1I j , Hj 〉 = 0. Since

1R = ∏d
i=1 1Ii and H = ∏d

i=1 Hi we obtain that 〈1R, H〉 = ∏d
i=1〈1Ii , Hi 〉 = 0 as

required.
To see the last part, observe that if 〈1Di , H〉 �= 0 then either Di ⊆ supp(H−) or

Di ⊆ supp(H+). Hence for any point x ∈ Di we have
〈1Di ,H〉
〈H ,H〉 H(x) ≥ 0 from which

the last part follows. ��
Define a lattice rectangle in [0, 1)d of order � ∈ N to be a rectangle whose corners
are on the lattice 2−�

Z. In the next proposition we provide a decomposition of lattice
rectangles of order � into diadic rectangles.

Proposition 4.2 Every lattice rectangle of order � ≥ 1 in [0, 1)d can be written as the
disjoint union of at most (2�)d disjoint diadic rectangles of order at most �.

Proof We begin by showing that any interval of order � ≥ 1 in d = 1 can be written
as the disjoint union of at most 2� disjoint diadic intervals. We prove using induction
on �. For the case � = 1 the statement is straightforward. For a diadic interval I =
[a2−�, b2−�) with 0 ≤ a < b ≤ 2� we write

I =
[

a2−�, a′2−�
)

∪
[

a′2−�, b′2−�
)

∪ [b′2−�, b2−�)

where a′ = a + 1a is odd, b′ = b − 1b is odd and we interpret [c, c) = ∅. Since the
middle interval is of order at most �−1, by our induction assumption, it can be written
as a disjoint union of at most 2� − 2 diadic intervals.

For general d, given R = ⊗d
j=1 I j with I j = [a j2−�, b j2−�) this allows us to

decompose each I j into disjoint diadic intervals I j1, . . . , I jk j for k j ≤ 2�. Writing
R =⋃1≤m j≤k j ⊗d

j=1 I jm j . ��
Finally, we bound the error when approximating any rectangle by a pair of lattice
rectangles, one of which is slightly larger and one which is slightly smaller.

Proposition 4.3 Let �, d ∈ N. For any rectangle R contained in [0, 1)d there exist
lattice rectangles R−, R+ of order at most d� such that R− ⊆ R ⊆ R+ and 0 ≤
|R1\R2| ≤ 2d2−�.
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Proof Let R = ⊗d
i=1[xi , yi ) ⊆ [0, 1)d , and write R− = ⊗d

i=1[�2�xi�2−�, 
2�yi�2−�)

and R+ = ⊗d
i=1[
2�xi�2−�, �2�yi�2−�). Clearly R− ⊆ R ⊆ R+. Writing ri =


2�yi�2−� − �2�xi�2−� we have |R−| = ∏d
i=1 ri and |R+| ≤ ∏d

i=1(ri + 21−�). The
Propositions follows. ��

5 The Haar (1+ ˇ)-thinning strategy

In this section we present theHaar (1+β)-thinning strategywhich guarantees asymp-
totically low discrepancy, and show that it satisfies Theorem 2 (Fig. 1).

Throughout, let h = h(n) = 
log n�. This will serve as the largest order Haar
function being considered by our strategy at time n. We denoteW (s) =∑s

i=1

(i+d−1
d−1

)

and let Z be a process on [0, 1)d associated with counting measure ν and conditional
density λ, defined by

λn(νn)(x) := 1 + β

2W (h)

∑

H∈Hh
1

sgn〈νn,−H〉H(x). (5)

We begin by observing that

Observation 5.1 Z is a (1 + β)-thinned sample of a (1 + β)-thinning strategy.

Proof Observe that
∫

[0,1)2 H(x)dx = 0 for all H ∈ Hh
1 and therefore,

∫

[0,1)2 λn(νn)(x)
dx = 1. We only need to verify that the condition of Proposition 3.1 is satisfied at
every n ∈ N, i.e. that for all x ∈ [0, 1]d and n ∈ N we have

1 − β

2
≤ λ(x) ≤ 1 + β

2
,

which follows immediately from (5), and from the fact that for all x ∈ [0, 1) we have
∑

H∈Hh
1

|H(x)| = |{s ∈ N
d
0 , 0 <

d
∑

i=1

si ≤ h}| =
h
∑

i=1

(
i + d − 1

d − 1

)

= W (h). (6)

��
In light of the claim we call the strategy producing Z the Haar (1 + β)-thinning
strategy. See Fig. 1 for an illustration of the contribution of each Haar function to the
density of Zn under the Haar thinning strategy.

Next, in Sect. 5.1 we discuss the complexity of realizing this strategy. In Sect. 5.2
we show exponential concentration properties related to Z . Finally in Sect. 5.3 we use
these to prove Theorem 2.

5.1 Realizing the Haar thinning strategy

In this section we discuss the time and memory complexity required for the overseer
to realize the Haar thinning strategy. In particular we show the following.
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Fig. 1 Left, top: ν15 the empirical measure of a sequence sampled according to our thinning strategy at
n = 15. Left, middle:

∑

H∈H3
1
sgn〈νn , −H〉H(x), averaged on diadic squares of side 1/4 along with a

visual representation of the conditional density of λ15 averaged on diadic squares of side 1/4. Warmer color
indicates higher density. Left, bottom: The conditional density of λ15 along with a visual representation.
Right: Haar functions of orders one to three, multiplied by sgn〈νt , −H〉. Gray indicates the value 0,—the
value −1 and—the value 1. Notice that the fully grayed out functions of order three are the ones which are
perfectly balanced

Proposition 5.2 In order to apply the (1 + β)−Haar thinning strategy the overseer
requires O(n logd n) memory and O(n logd n) computations to produce the first n
samples.

Proof Recall that in our set-up the overseer is given a uniformly distributed point
Xn+∑n−1

i=1 χi
in [0, 1)d . Then, relying upon a data structure which he maintains, the

overseer must compute a threshold τn ∈ [0, β]. Then with probability τn the value of
χn is set to be 1 and otherwise it is set to be 0. In light of Proposition 3.1, in order
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to realize Z we must set τn = λn(νn)(x) − β
2 . The rest of the section discusses the

complexity of computing this function.
We remark that, as the custom goes, complexity estimates are given for integer

computations and ignore the increase in storage, reference and computation costs for
large numbers. If these were taken into account additional poly-log log n factors would
multiply both time and memory.

As before, let n ∈ N, recall that h = h(n) = 
log n� and W (s) = ∑s
i=1

(i+d−1
d−1

)

,
and denote by HI a Haar function corresponding to the diadic rectangle I . For each
function HI of order � with I = I1 × · · · × Id and O(Ii ) = �i so that � = 1 +∑ �i ,
we call �1, . . . , �d the shape of I . At time n we maintain an array An of gradually
increasing size. An consists of data cells corresponding to each Haar function in Hh

1 .
Each of these cells associated with HI ∈ Hh

1 contains the present value of 〈νn, HI 〉.
Observe that the size of such an array is bounded by the total number of shapes which
isW (h) = O(logd n), multiplied by themaximal number of elements of each shape of
order � ≤ h which is 2�+d = O(n), giving total memory complexity of O(n logd n),
as required.

The arrangement of A is as follows.We order the data cells first by their order �, then
lexicographically by shape and then lexicographically by the point whose coordinate
sum is minimal in I . With this arrangement we can find the cells of all Haar functions
of order less than � containing a particular point at the cost of a constant number of
arithmetic operations per function.

Given this array, computing the value of τn takes W (h) = O(logd n) operations,
one for each element of the sum. Using this we can determine the value of Zn . We
then update An by altering the value of all entries corresponding to Haar functions
associatedwith rectangles containing Zn .As noted in (6), this takesW (h) = O(logd n)

operations. In addition, for each n such that h(n) > h(n − 1) we must allocate
additional entries to A for the new

(h+d−1
d−1

)

shapes of order h(n). There are less
than 2n Haar functions for each of these shapes so that this operation takes less than
2nW (h) operations. We then go over all points Z1, . . . , Zn and update the entries
of An corresponding to Haar functions associated with the new shapes at the cost
of O(nW (h)) steps. Hence to produce the first n entries and the time complexity
is

O(n logd n) +

log n�
∑

s=1

(

O(2d+sW (s)) + O(2sW (s))
)

= O(n logd n),

concluding the proof of the proposition. ��

5.2 Concentration properties of Z

We begin by showing that diadic projections of Z have a balancing nature. Recall that
h = 
log n�.
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Proposition 5.3 For any Haar function H on [0, 1)d we have

E

(

e
β|〈νn ,H〉|
2W (h)

)

<
600W (h)2

β2 . (7)

Proof Let H be a Haar function on [0, 1)d of order � ∈ N. We use different arguments
for times before and after 2�. We begin by showing that Z is β

W (h)
-balancing with

respect to {H+, H−} starting from time s = 2�. We write κ := |H−| = |H+|, let
2� ≤ M ≤ n and observe that

λH+
M − λH−

M = 〈H , λ〉 =
〈

H , 1 + β

2W (
logM�)
∑

G∈H
logM�
1

G(x) sgn〈νM ,−G〉
〉

= 2βκ sgn〈νM ,−H〉
2W (
logM�) .

Hence the conditions of (2) are satisfied with θ = β
W (h)

. Next we show (7). Indeed,

for any time M ≤ 2�, we have

E

(

e
β

2W (h)
|〈νM ,H〉|

)

≤ E

(

e
β

2W (h)
〈νM ,|H |〉

)
(i)≤ e

2β
W (h)

2min(d,h) (i i)≤ 100 <
600W (h)2

β2 .

(8)
Here inequality (i) follows from Observation 3.5 using M ≤ 2�, |D| = |supp(H)| ≤
min(2d−�, 1). To see inequality (ii) we claim that W (h) ≥ 2min(h,d)−1. Indeed, if
h ≤ d, then

W (h) ≥
(
h + d − 1

h

)

≥ dh

h! ≥ hh

h! ≥ 2h−1,

while if h > d, then

W (h) ≥
(
h + d − 1

d − 1

)

≥ hd−1

(d − 1)! ≥ dd−1

(d − 1)! ≥ 2d−1.

From this we also deduce that (7) holds in the case n ≤ 2�. By applying Lemma 3.2
with {H+, H−}, s = 2� and θ = β

W (h)
we get that (7) holds also in the case n > 2�,

concluding the proof of the proposition. ��
Next, we use this to show concentration of νn on low-order lattice rectangles.

Proposition 5.4 For any n ∈ N and any lattice rectangle R ⊂ [0, 1)d with of order at
most h we have

E

(

e
β|νn (R)−n|R||
2d+1hdW (h)

)

≤ 600W (h)2

β2 .
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Proof Let R be a lattice rectangle of order at most h. By Proposition 4.2 there exist
disjoint diadic rectangles D1, . . . , Dk of order at most h such that k ≤ (2h)d and
R = ∪k

i=1Di . By Proposition 4.1, each Di satisfies

1Di =
∑

H∈Hh
0

〈1Di , H〉
〈H , H〉 H ,

with
∑

H∈H�
0

∣
∣
∣
〈1Di ,H〉
〈H ,H〉

∣
∣
∣ = 1. We observe that 〈1Di ,1[0,1)d 〉 = n|Di | where 1[0,1)d is

the only Haar function of order 0. We conclude that there exist coefficients aH for
H ∈ Hh

1 with
∑

H∈Hh
1
|ai | ≤ (2h)d such that

1R =
∑

H∈Hh
1

ai H + n|R|.

By Proposition 5.3, together with Observation 3.4, this implies that

E

(

e
β|νn (R)−n|R||
2(2h)dW (h)

)

≤ 600W (h)2

β2 , (9)

as required. ��

5.3 Proof of Theorem 2

Let n ≥ 4 and observe for n < 2d the theorem is straightforward as Dis(Zn) ≤ n
almost surely. As before denote h = 
log n�. We begin by bounding W (h). We
compute

W (h) ≤ h(h + d − 1)d−1

(d − 1)! ≤ 2d−1hd

(d − 1)! ≤ 25

(
h

2

)d

.

Next, let R be a lattice rectangle of order at most h. By Proposition 5.4 we have

E

(

e
β|νn (R)−n|R||

50h2d

)

≤ E

(

e
β|νn (R)−n|R||
2d+1hdW (h)

)

≤ 600W (h)2

β2 ,

so that by Markov’s inequality for all �′ > 0 we have

P

(∣
∣
∣νn(R) − n|R|

∣
∣
∣ ≥ �′ log2d n

)

≤ 219 log2d n

22dβ2 e− �′β
50 .

Observe that there are at most n2d
2
lattice rectangle of order at most d log n. Denot-

ingRi = {lattice rectangle R ⊂ [0, 1)d : O(R) ≤ i} we have
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P

(

sup
R∈Ri

∣
∣
∣νn(R) − n|R|

∣
∣
∣ ≥ �′ log2d n

)

≤ 219 log2d n

22dβ2 n2d
2
e− �′β

50 .

By proposition 4.3 applied with � = 
log n�, for each rectangle R in [0, 1)d there
exist R+, R− ∈ Rd log n such that R− ⊆ R ⊆ R+ and |R+| ≤ |R−| + 4d/n. Hence

νn(R
−) − n|R−| − 4d ≤ νn(R

−) − n|R+|
≤ νn(R) − n|R| ≤ νn(R

+) − n|R−| ≤ νn(R
+) − n|R+| + 4d.

Hence, for �′ > 0 we get

P

(

Dis(Zn) ≥ �′ log2d n + 4d
)

≤ β−2 exp

(
2d2 log n

log e
+ log(log n) + log(2d)

+19 − 2d

log e
− β�′

50

)

.

Plugging in �′ = β−1(� + 1000 + 100d2 log n) we obtain

P

(

Dis(Zn) ≥ β−1 log2d(N )(� + 1000 + 100d2 log n)
)

≤ β−2e− �
50 ,

as required. ��

5.4 Proof of Claim 2.1

It would suffice to show the Z is unbiased for 1R where R = ⊗d
i=1 Ii is a diadic

rectangle �. To see this we show that

E

[

1

n

n
∑

i=1

1R(Zi )

]

= E

[

1

n

n
∑

i=1

1R′(Zi )

]

(10)

for any R′ = ⊗d
i=1 I

′
i with O(I ′

i ) = O(Ii ). This is a consequence of the diadic
tree symmetry. To see this, consider the binary representation of R and R′ in each
dimension and write Di for the digits in which they disagree in dimension i . Let
g : [0, 1)d → [0, 1)d be the measure preserving bijection which maps a point x to
a point g(x) whose binary representation in each coordinate i is flipped exactly on
Di . Now couple the sequence Xi and with a sequence X ′

i = g(Xi ) and apply the
same strategy to produce {Z j } j∈N and {Z ′

j } j∈N using the same sequence U used to
determine our thinning decisions as in Sect. 3.1. Observe that in this case Z ′

i = g(Zi )

so that for all n we have

1

n

n
∑

i=1

1R(Zi ) = 1

n

n
∑

i=1

1R′(Z ′
i ),

and hence, as Z ′
i

d= Zi , (10) holds. ��

123



The power of online thinning in reducing discrepancy 125

6 The greedy-Haar strategy

In this section we describe the empirically more efficient variant of our strategy called
the greedy-Haar strategy. We then provide heuristic justification for Conjectures 1
and 2.

Unlike the case of the Haar strategy, we describe the strategy directly by

fn((Z1, . . . , Zn−1), x) =

⎧

⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1
∑

H∈Hh
1

sgn〈νn,−H〉H(x) < 0

1
2

∑

H∈Hh
1

sgn〈νn,−H〉H(x) = 0

0
∑

H∈Hh
1

sgn〈νn,−H〉H(x) > 0

The name greedy-Haar corresponds to the a point of view by which each Haar func-
tion H wishes to reduce 〈νn, H〉. Hence we compute

∑

H∈Hh
1
sgn〈νn + 1x , H〉 −

∑

H∈Hh
1
sgn〈νn, H〉 and if this quantity is positive we keep x , if it is negative we

reject it, and if it is 0, we break the tie by a fair coin-toss.

6.1 Heuristic analysis

We begin by describing the logd/2(n) heuristic improvement to Theorem 1, giving
rise to Conjecture 1. We then describe an additional heuristic logd/2(n) improvement
stemming from the greedy-Haar strategy which adds up to Conjecture 2.

Improvement of the analysis (Conjecture 1) We conjecture that the usage of
Observation 3.4 to obtain (9) is not tight. In this transitionwedecompose each rectangle
R to the sum Haar functions whose coefficients add up to at most logd2 n. We then
bound the rectangle’s discrepancy by a triangle inequality using the bound for each
individual Haar funciton. However, for a rectangle R and a Haar function h we have
|〈1R, h〉|/〈h, h〉 ≤ 1, so the coefficient of each particular Haar function is at most 1.
Hence, assuming sufficient independence between the coefficients 〈1R, h〉 for different
Haar functions h, we should expect the sum of 〈ν, H〉 to produce a discrepancy of
logd/2

2 n, and not logd2 n.
Better concentration inequalities for the greedy-Haar strategy (Conjecture 2)

Let H ∈ Hh
1 be a particular Haar function and assume that 〈νn,−H〉 > 0. Denote

by k the number of elements ofHh
1 whose support contains a given point. Also recall

the notation G− and G+, the positive and negative domains of a Haar function G. We
examine the probability of that a point falls in H+ compared with the probability that
it falls in H−. Observe that every other Haar function G ∈ Hh

1\{H} is orthogonal
to H so that (sgn〈νn,−G〉)〈H ,G〉) = 0. In addition, if we approximate the signs
of 〈νn,−G〉 for G ∈ Hh

1\{H} by independent random variables , then their total
value would have a binomial( 12 , k) distribution, so that typically on a region of size
k−1/2

2 supp(H) they are tied and the sign of 〈νn,−H〉 determines whether to accept or
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Table 1 Some values of discrepancy for different strategies in one-dimension

Strategy n = 26 n = 28 n = 210 n = 212 n = 214 n = 216 n = 218 n = 220

Monte
Carlo

9.6 (2.0) 19.9 (4.5) 40.5 (9.3) 79.0 (14.7) 156.7 (32.0) 318.1 (74.7) 627.1 (132.2) 1258.5 (264.8)

Haar 7.9 (1.5) 14.8 (3.3) 26.3 (5.1) 44.2 (7.8) 69.4 (11.3) 98.5 (12.7) 140.9 (17.5) 187.4 (19.8)

Greedy-
Haar

6.9 (1.2) 11.9 (2.4) 18.4 (2.8) 26.3 (3.4) 36.4 (4.5) 48.3 (5.0) 60.2 (5.4) 74.4 (5.9)

Given are the mean (and standard error) across 200 experiments

reject. Hence we expect the process 〈νn,−H〉 to behave roughly like an �(1/hd/2)

balancing process which would yield an improvement of logd/2
2 n to the bound.

7 Empirical results

In this section we provide simulation results both for the Haar and the greedy-Haar
2-thinning strategies. As evident from these simulations, the greedy-Haar strategy is
significantly better than the Haar strategies, and both strategies perform somewhat
better than shown by our Theorems.

We begin by showing discrepancy results, and then discuss the bias of particular
rectangles. In all simulations we compare the three methods, i.i.d. samples which we
refer to here as Monte-Carlo, Haar 2-thinning, and greedy-Haar 2-thinning. Unfortu-
nately the simulations are not sufficient to determine the power of the log in the decay
of the discrepancy with sufficient certainty to scientifically estimate the exponent of
the log in Conjecture 2.

7.1 Main simulations

We have averaged 200 simulated outputs of 220 samples for each of the three strategies
in one dimension. For this case, we have computed the rectangle R which has maximal
|νN (R)−|R|| whenever N = �2k�. Our results are summarized in Table 1 and Fig. 2.

We also compute the star discrepancy of the sequences obtained using different
strategies in two dimensions. This is defined as discrepancy with respect to R =
{⊗d

i=1[0, bi ) ⊆ [0, 1)d : 0 ≤ bi ≤ 1}. Observe that in dimension two, the star
discrepancy and discrepancy with respect to axis-aligned rectangles differ by a factor
of at most 4. We compute the average (and standard error) of the star discrepancy
across 30 experiments and summarize the results in Table 2 and Fig. 2.

7.2 Other simulations

Wewere also interested in the performance of the strategies on a diadic rectangles and
on a given rectangle whose decomposition intro Haar-functions has high coefficients.
These show the validity of our estimates for such rectangles, and verify the logic of the
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(a)

(c) (d)

(b)

Fig. 2 Plots of discrepancy in one dimensions (averaged over 200 experiments) and star discrepancy in two
dimensions (averaged over 30 experiments) for Monte Carlo (blue), Haar 2-Thinning (green) and Greedy-
Thinning 2-Thinning (red) strategies. The plots are provided both in linear and log-scale. The solid lines
denote the averaged value, and the height of the shaded regions denote one unit of standard error across the
experiments (color figure online)

Table 2 Some values of star-discrepancy for different strategies in two-dimensions

Strategy n = 210 n = 211 n = 212 n = 213 n = 214 n = 215 n = 216 n = 217

Monte
Carlo

39.6 (6.2) 56.8 (13.0) 77.5 (16.7) 109.0 (16.7) 156.5 (32.0) 214.7 (41.6) 317.6 (60.5) 427.6 (85.0)

Haar 36.9 (7.0) 50.3 (7.2) 66.4 (11.5) 97.7 (18.1) 129.2 (24.4) 162.1 (27.5) 227.5 (46.7) 297.5 (46.4)

Greedy-
Haar

24.1 (3.2) 31.9 (5.4) 41.0 (7.9) 50.2 (7.3) 64.8 (10.6) 75.5 (10.7) 90.9 (9.4) 110.4 (14.4)

Given are the mean (and standard error) across 30 experiments

proof. For this purpose we chose the intervals [0, 1
2 ]d and [ 13 , 5

6 ]d , the first of which is
diadic while the other has a very complex diadic decomposition. Comparison between
those rectangles in one and two dimensions are given in Tables 3, 4, 5 and 6 and
Fig. 3. The results clearly indicate the the biases of these rectangles are dominated by
a different power of log(n).
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Table 3 Mean (standard error) biases for [0, 1/2)
Strategy n = 26 n = 28 n = 210 n = 212 n = 214 n = 216 n = 218 n = 220

Monte
Carlo

3.4 (2.4) 6.3 (4.5) 13.5 (10.4) 25.7 (18.5) 48.3 (35.1) 104.2 (83.5) 199.9 (151.0) 369.4 (293.0)

Haar 1.7 (1.5) 2.8 (2.6) 4.3 (4.2) 5.5 (5.4) 7.7 (8.1) 7.7 (7.9) 8.6 (9.0) 10.0 (8.1)

Greedy-
Haar

1.3 (1.1) 1.5 (1.3) 1.8 (1.7) 1.9 (1.9) 2.4 (2.5) 2.6 (2.4) 2.6 (2.3) 2.9 (2.9)

Table 4 Mean (standard error) biases for [1/3, 5/6)
Strategy n = 26 n = 28 n = 210 n = 212 n = 214 n = 216 n = 218 n = 220

Monte
Carlo

3.1 (2.3) 6.5 (5.1) 12.9 (10.0) 24.2 (18.6) 47.3 (36.4) 93.1 (72.3) 194.0 (136.4) 376.2 (313.3)

Haar 2.4 (1.8) 4.4 (3.3) 6.9 (5.5) 11.7 (8.7) 16.9 (12.4) 21.5 (16.6) 27.5 (20.2) 32.5 (23.8)

Greedy-
Haar

2.0 (1.5) 3.4 (2.5) 4.6 (3.4) 5.5 (4.2) 7.0 (4.9) 9.1 (6.6) 9.0 (7.0) 10.1 (7.9)

Table 5 Mean (standard error) biases for [0, 1/2)2

Strategy n = 210 n = 211 n = 212 n = 213 n = 214 n = 215 n = 216 n = 217

Monte
Carlo

11.6 (9.6) 16.7 (12.7) 23.1 (18.6) 35.8 (28.0) 48.0 (33.7) 62.3 (42.6) 90.8 (62.9) 125.9 (90.9)

Haar 8.8 (6.8) 11.3 (9.3) 17.2 (13.2) 24.1 (20.2) 30.2 (25.1) 39.5 (30.3) 55.9 (44.4) 66.1 (46.9)

Greedy-
Haar

3.9 (3.1) 4.3 (3.5) 4.6 (3.9) 5.8 (4.9) 5.8 (4.6) 6.1 (5.0) 6.4 (5.6) 6.9 (5.1)

Table 6 Mean (standard error) biases for [1/3, 5/6)2

Strategy n = 210 n = 211 n = 212 n = 213 n = 214 n = 215 n = 216 n = 217

Monte
Carlo

10.1 (7.6) 15.0 (11.5) 23.0 (16.9) 31.5 (21.6) 43.8 (32.6) 71.4 (48.9) 86.6 (70.4) 115.5 (87.4)

Haar 9.6 (7.3) 13.4 (10.4) 20.1 (16.5) 26.3 (20.6) 34.2 (25.9) 52.2 (39.5) 75.7 (56.6) 87.0 (67.9)

Greedy-
Haar

7.1 (5.0) 9.5 (7.5) 10.7 (7.6) 13.3 (10.2) 16.2 (14.2) 20.2 (14.7) 22.5 (16.8) 27.1 (20.5)

7.3 Observations from the simulations

We draw the following observations from the simulations

• Both Haar and greedy-Haar seem to be always at least as good as Monte-Carlo
sampling.
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(a) (b)

(c) (d)

Fig. 3 Plots of the bias |ν(R) − |R|| in logarithmic scale averaged over 200 experiments for different
rectangles R in one and two dimensions. The solid lines denote the averaged value, and the height of the
shaded regions denote one unit of standard error across the experiments

• Greedy-Haar strategy seem to be always at least as good the Haar strategy.
• Greedy-Haar performs significantly better than Monte-Carlo sampling for as little
as 50 samples in one dimension and as little as 200 samples in two dimensions.
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