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a b s t r a c t

Several estimation techniques assume validity of Gaussian approximations for estimation purposes.
Interestingly, these ensemble methods have proven to work very well for high-dimensional data even
when the distributions involved are not necessarily Gaussian. We attempt to bridge the gap between this
oft-used computational assumption and the theoretical understanding of why this works, by employing
some recent results on randomprojections on lowdimensional subspaces and concentration inequalities.

© 2016 Elsevier B.V. All rights reserved.
1. Introduction

In many geophysical or meteorological signal processing
applications, Ensemble Kalman Filter (EnKF) or data assimilation
has become a popular methodology. Unlike the extended Kalman
filter, it does not linearize the dynamics around a nominal
trajectory. Instead, it propagates state-observation dynamics as
per the original nonlinear rule, but estimates the next state as
though it were conditionally Gaussian, using empirical estimates
of covariances based on simulated transitions [1]. The Gaussianity
hypothesis remains ad hoc, nevertheless the methodology has
been found to be very useful by practitioners. Trying tomake sense
of this ‘unreasonable effectiveness of Gaussianity’ (to borrow a
phrase from Wigner) is the motivation behind this work. We do
not, however, address the dynamic situation handled by EnKF, but
consider the simpler problem of estimating a random variable,
given another, in a high dimensional set-up and justify the
Gaussian approximation thereof.

Traditionally, Gaussian assumption has been justified either
by invoking the classical central limit theorem, postulating that
the observed randomness is the cumulative effect of a large
number of independent small events (e.g., shot noise), or by the
maximum entropy principle, which is a ‘worst case’ analysis. (The
two philosophies are not unrelated, as we now know from [2].)
What we propose here is a third alternative, also a central limit
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theorem, but in large dimension asymptotics rather than large
sample asymptotics as in the classical case. The key tool is a result
regarding approximate Gaussianity of low dimensional marginals
of a class of high dimensional distributions due to Klartag and
others. The details follow in subsequent sections.

While EnKF remains our original motivation, the applicability
and relevance of this work to other domains is not ruled out. More
generally, this work is the first step towards providing a rigorous
basis for using Gaussian approximations in high dimensional
inference, wherever it occurs, subject to the log-concavity and
sparsity hypotheses. We use ideas from compressive sensing to
claim that given an n-dimensional stochastically sparse random
vector, one can recover it from samples or measurements that
are fewer than n in number. Compressive sensing essentially
deals with the problem of reconstructing a sparse vector from
underdetermined measurements. One aims to minimize the l1-
error between the coefficients of the original vector and the
reconstructed one. See [3] for details.

The paper is organized as follows. We outline the problem and
the notation in the next section. In Section 2, we present our result
for the special case of stochastically sparse vectors. As mentioned
earlier, this requires some results from the theory of compressive
sensing. Section 3 recalls the key result of Klartag and Eldan on low
dimensional projection with nearly Gaussian densities and points
out its implications in the present context. Throughout,∥.∥denotes
the standard Euclidean norm in Rn.

1.1. Outline of the problem

We first show that given a random vector (X, Y ) ∈ Rn1+n2 ,
if X, Y are sparse, E[Y |X] can be approximated by projections
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on a smaller dimensional subspace. For the final step, where we
show that suitable conditional densities can be approximated by
Gaussian densities, an additional assumption of log-concavity of
conditional density of Y given X is required.

We assume throughout that

(A1) E[∥Y∥
2
]
1/2 and E[∥X∥

2
]
1/2 are bounded by some constant

M < ∞, and,
(A2) the regular conditional law Ψ (·|·) of Y given X = x has a

Lipschitz version as a map x ∈ Rn1 → Ψ (·|x) ∈ P1(Rn2)
with Lipschitz constant L, where P1(Rn2) is the space of
probability measures µ on Rn2 with


|x|µ(dx) < ∞ under

the Wasserstein-1 metric ρ(µ′, µ′′) := inf E

∥Y ′

− Y ′′
∥

.

Here the infimum is over all pairs of random variables
(Y ′, Y ′′) with law of Y ′, resp. Y ′′, being µ′, resp. µ′′. We work
with this version throughout.

Let X̌, Y̌ denote the orthogonal projection of X, Y on random k1
and k2 dimensional subspaces respectively. By suitable choice of
basis, we take this to be the first k1 co-ordinates of X and first k2 co-
ordinates of Y . Let X̂ = X̌ and Ŷ =


n2
k2
Y̌ be the scaled projection.

We denote by X̄ and Ȳ the vectors obtained by padding X̌ and Y̌ by
n1 − k1 and n2 − k2 zeros respectively.

In Section 2we show that using results in [4] and under suitable
conditions of sparsity of X and Y , one can approximate E[Y |X]

by E[Y ∗
|X∗

], where Y ∗ and X∗ are ‘‘good’’ reconstructions of X, Y
from only k1, resp. k2 observations, where a ‘‘good’’ reconstruction
means that Y and Y ∗ (resp. X and X∗) are close in standard
Euclidean norm with high probability. Furthermore, in Section 3,
we show that E[Y ∗

|X∗
] and therefore E[Y |X] can be computed

approximately using a Gaussian density under a log-concavity
assumption on Ψ .

LetGn,l denote the Grassmannian of all l-dimensional subspaces
of Rn, and let σn,l stand for the unique rotationally invariant
probability measure on Gn,l [5].

2. Sparse vectors

Our aim is to estimate E[Y |X] by E[Y |X], thereby reducing the
cost of computation. Using the results in [4], we now show that
this aim can be achieved for a ‘stochastically sparse’ vector. In [4],
the authors show that it is possible to reconstruct a sparse vector
to high accuracy from a small number of random measurements.
Let |v|n denote the nth largest entry of the vector v, or the nth
largest coefficient in a fixed basis. Consider a vector v ∈ RN

such that either |v|n ≤ R · n−1/p for some R > 0 and some
0 < p < 1, or ∥v∥l1 ≤ R for some R > 0 and p =

1. Consider a random orthonormal basis {φm}
∞

m=1 of RN and let
θ(g) = [⟨g, φ1⟩, . . . , ⟨g, φN⟩]

T for g ∈ RN . Suppose we observe
only the first K coefficients in this basis. Let FΩ be the submatrix
enumerating those sampled vectors, i.e., the projection operator.
One can solve the following optimization problem

(P) min
g∈RN

∥θ(g)∥l1 subject to FΩg = FΩv. (1)

The solution v∗ is such that for β > 0 sufficiently small

∥v − v∗
∥ ≤ Cp,β .R.(K/ logN)−r

with probability at least 1 − O(N−ρ/β), where r = 1/p − 1/2 and
ρ > 0 is a universal constant. Also, as noted in [4], the choice of
basis is in fact irrelevant. All that is needed is that the vector v be
sparse in some fixed basis.

The above optimization problem can be reduced to a linear
program by the standard technique of replacing each variable (say)
x by x+

− x− and defines a map h : ν ∈ RN
→ ν∗

∈ RN whenever
the solution ν∗ is unique. Since the latter holds for a.e. ν, h is well
defined as a measurable function. From the 1-homogeneity of the
objective function and the constraints, it is easy to see that h has
linear growth.

To use the above results for random vectors, we define the idea
of ‘stochastically sparse’ random vectors.

Definition 2.1. Let Z ∈ Rm be a random vector. We say that Z is
stochastically sparse if for a prescribed η1 > 0

P

sup
n

|Z |n

n−1/p
> R


< η1 (2)

for some R > 0 and 0 < p < 1.

Let X∗ and Y ∗ denote the solution to the optimization problem
(P) corresponding to stochastically sparse random vectors X and Y
respectively. Then from the above discussion we have that, Y ∗

=

h(Ȳ ) and X∗
= h(X̄). Define H(x) =


y Ψ (y|x)dy and let Ψ̄ (·|x)

denote the image of Ψ (·|x) under the projection Rn1 → Rk2 . Now
we can prove the following approximation result.

Theorem 2.2. Let X ∈ Rn1 and Y ∈ Rn2 be stochastically sparse. Let
η1, ρ and β be as defined above. Then, given ϵ > 0,

P
E[Y |X] −


h(ȳ)Ψ̄ (ȳ|X∗)dȳ

 > ϵ


≤

4
ϵ


δ1 +

Lδ2
2

+ M(2 + L)

1 − q


where, q = 1 − 2η1 − O(n−ρ/β

2 ) − O(n−ρ/β

1 ).

Proof. Using the result in [4], we have that on a set Bwith P(B) ≥

q = 1 − 2η1 − O(n−ρ/β

2 ) − O(n−ρ/β

1 ),

∥Y − Y ∗
∥ ≤ δ1 and ∥X − X∗

∥ ≤ δ2 (3)

where,

δ1 = Cp,β .R.(k2/ log n2)
−r and δ2 = Cp,β .R.(k1/ log n1)

−r

for r = 1/p − 1/2. We have,

P
E[Y |X] −


h(ȳ)Ψ̄ (ȳ|X∗)dȳ

 > ϵ


≤ P(|E[Y |X] − H(X∗)| > ϵ/2)

+ P
H(X∗) −


h(ȳ)Ψ̄ (ȳ|X∗)dȳ

 > ϵ/2


.

Note that

P
H(X∗) −


h(ȳ)Ψ̄ (ȳ|X∗)dȳ

 > ϵ/2


≤ P(E[∥Y − Y ∗
∥I{B}|X = x]x=X∗ > ϵ/4)

+ P(E[∥Y − Y ∗
∥I{Bc

}|X = x]x=X∗ > ϵ/4).

From stochastic sparsity of Y , we get

P(E[∥Y − Y ∗
∥I{B}|X = x]|x=X∗ > ϵ/4) ≤

4
ϵ
δ1 (4)

and,

P(E[∥Y − Y ∗
∥I{Bc

}|X = x] > ϵ/4)

≤
4
ϵ
E[∥Y − Y ∗

∥
2
]
1
2

P(Bc)

≤
8
ϵ
M


(1 − q). (5)
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From Eqs. (4) and (5), it follows that

P
H(X∗) −


h(ȳ)Ψ (ȳ|X∗)dȳ

 > ϵ/2


≤
4
ϵ
δ1 +

8
ϵ
M


1 − q. (6)

For P(|E[Y |X] − H(X∗)| > ϵ/2), we use (A2) and the stochastic
sparsity of X .

P(|E[Y |X] − H(X∗)| > ϵ/2)
≤ P(L∥X − X∗

∥ > ϵ/2)

≤
2L
ϵ
E[∥X − X∗

∥]

≤
2L
ϵ
E[∥X − X∗

∥I{B} + ∥X − X∗
∥I{Bc

}]

≤
2L
ϵ

δ2 +
4L
ϵ
M


1 − q. (7)

The claim now follows from Eqs. (6) and (7). �

3. Low dimensional projections with Gaussian densities

There are several approaches to study higher dimensional
distributions. Just as large deviations and limit theorems exploit
the symmetry and/or the independence structure of the random
variables, Klartag investigated the classes of densities with certain
geometric characteristics. Building uponhis earlierwork on central
limit theorem for convex sets [6,7], Klartag and Eldan [8] proved a
pointwise version of the multi-dimensional central limit theorem
for convex bodies in 2007.We state some of their important results
here. For details see the aforementioned papers or the survey [9]
by Klartag.

For a subspace E ⊂ Rn and a point x ∈ Rn we write ProjE(x)
for the orthogonal projection of x onto E. In [7] Klartag proved a
total variation result implying that the density of ProjE(X) is close
to the density of a certainGaussian randomvector inL1-norm. This
later led to the approximation result in pointwise sense (Theorem
1, [8]). Before stating the result of Klartag and Eldan [8], we give a
few definitions.

Definition 3.1. A function f : Rn
−→ [0, ∞) is log-concave if

log f is concave on the support of f .

We consider random vectors in Rn that are distributed accord-
ing to a log-concave density. It is important to note at this point
that while the Gaussian approximation might work for a larger set
of problems, our justification for its effectiveness requires the log-
concavity assumption on the underlying density. This restriction is
imposed by the nature of the existing works that we build upon
and it is not clear to what extent it may be relaxed.

Definition 3.2. We say that f : Rn
−→ [0, ∞) is isotropic if it is

the density function of some random variable with zero mean and
identity covariance matrix. That is, f is isotropic when

Rn
f (x)dx = 1,


Rn

xf (x)dx = 0 and,
Rn

⟨x, θ⟩
2f (x)dx = ∥θ∥

2
; ∀ θ ∈ Rn.

Any non-negative log concave function with 0 <

f < ∞ can

be brought to an isotropic position via an affine map. Let (X, Y ) be
randomly distributed inRn1×Rn2 with a log concave density f > 0,
where X ∈ Rn1 , Y ∈ Rn2 and n1, n2 are large. Then there exists an
invertible affine map A : Rn1 × Rn2 −→ Rn1 × Rn2 such that

(X ′, Y ′) := A((X, Y ))

has an isotropic and log-concave density. Hence without loss of
generality, we will assume for now that (X, Y ) is a random vector
in Rn1 × Rn2 with isotropic log-concave density.

Remark 1. We have (X, Y ) = A−1(X ′, Y ′). Since we denote ProjE
by Γ , we have (treating Range(Γ ) := Rn by zero padding),

Γ (X, Y ) = Γ A−1(X ′, Y ′)

Then, AΓ (X, Y ) = AΓ A−1(X ′, Y ′).

As (AΓ A−1)2 = AΓ 2A−1
= AΓ A−1, we have that AΓ A−1 is also a

projection. Consequently the same results hold for AΓ A−1 as well.
This justifies the assumption.

We state both total-variation and pointwise results from
Klartag.

Theorem 3.3 ([6]). There exists a universal constant c > 0 for which
the following holds: Let n ≥ 3 be an integer, and let X be a random
vector in Rn with an isotropic, log-concave density. Let ε > 0 and
suppose that 1 ≤ k ≤ cε2 log n

log log n is an integer. Then there exists a

subset E ⊂ Gn,k with σn,k(E) ≥ 1 − e−cn0.99 such that for any E ∈ E ,

dTV (ProjE(X), ZE) ≤ ε

where ZE is a standard Gaussian random vector in the subspace E and
dTV denotes the total variation distance between the respective laws.

Theorem 3.4 ([8]). Let X be an isotropic random vector in Rn with
a log-concave density. Let 1 ≤ l ≤ nc1 be an integer. Then there
exists a subset E ⊂ Gn,l with σn,l(E) ≥ 1 − Ce−nc2 such that for any
E ∈ E , the following holds. Denote by fE the density of the random
vector ProjE(X), then for all x ∈ E with ∥x∥ ≤ nc4 , fE(x)φ l

E(x)
− 1

 ≤
C
nc3

.

Here C, c1, c2, c3, c4 > 0 are universal constants and φ l
E denotes the

standard Gaussian density in E.

Remark 2. Klartag observes that c2 can be made arbitrarily close
to 1 at the expense of decreasing the other constants, and that
c4 ≤ 1/4. See the proof of Theorem 1 and the subsequent remark
in [8] for further discussion on optimality of c1, c2, c3, c4.

In Section 2, we showed that for unscaled but stochastically
sparse random vectors X and Y , one can construct Y ∗ and X∗ such
that E[Y |X] ≈


h(ȳ)Ψ (ȳ|X∗)dȳ. Recall that X∗

= h(X̄) and X̄ is
obtained by adding n1 − k1 zeros to the projection X̌ . Under the
conditions of Theorem 3.4, for 1 ≤ k1 ≤ nc1

1 , X̌ is approximately
Gaussian with zero mean and identity covariance matrix of order
k1. If we drop the isotropy condition, we retain Gaussianity but the
mean and variance will change. Using Theorems 3.3 and 3.4, we
now show that E[Y ∗

|X̌] can be approximated as the expectation of
a function of a Gaussian.
We need the following fact:

(F) Let BC0 denote a ball of radius C0 in Rk1 and N denote the
number of balls of radius η2 required to cover BC0 . Then we have
the bound (see [10], Proposition 5, p. 15),

N ≤


4C0

η2

k1
.

Let φ(.|x) denote the conditional Gaussian law approximating
Ψ̄ (·|x). We also assume the following:
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(A3) For a prescribed η4 > 0, we can pick K2 > 0 such that

sup
∥X̌∥<C0

E[∥h(Ȳ )∥I{∥h(Ȳ )∥ > K2}|X̌ = x̌] < η4

and,

sup
∥x̌∥<C0


∥h(ȳ)∥I{∥ȳ∥ > K2}φ(ȳ|x̌)dy < η4.

Let (X, Y ) ∈ Rn1+n2 be as above with the projections of X and Y
on k1 and k2 dimensional euclidean spaces respectively are defined
as earlier. Assume in addition that the conditional density Ψ (·|·) is
log-concave. Note that this implies in particular that corresponding
second moments will be finite [11].

Theorem 3.5. Let 1 ≤ k1 ≤ nc1
1 , 1 ≤ k2 ≤ cε2 log n

log log n , for c1
as in Theorem 3.4 and c, ε as in Theorem 3.3. Then, for a prescribed
η3 > 0,E[Y ∗

|X̌] −


h(ȳ)φ(ȳ|x̌)dȳ

 < (K1 + K2L)η2 + 4η4 + K2ϵλ

for some λ, K1 > 0, with probability ≥ 1 − η3 −


4C0
η2

k1
e−cn0.992 ,

where C0, η2, K2 and η4 are as above.

Proof. Recall that Y ∗
= h(Ȳ ) and X̌ is the projection of random

vector X ∈ Rn1 on Rk1 . Pick C0 so that P(∥X̌∥ > C0) < η3 for a
prescribed η3 > 0. For some K1 > 0, h(ȳ)φ(ȳ|x)dy −


h(ȳ)φ(ȳ|x′)dȳ


≤ K1∥x − x′

∥, x, x′
∈ BC0 .

Let [x̌] denote the center of the η2-ball that is closest to x̌ among
all the η2-balls as above covering BC0 , any tie being resolved
arbitrarily. We have,E[h(Ȳ )|X̌ = x̌] −


h(ȳ)φ(ȳ|x̌)dȳ


≤

E[h(Ȳ )|X̌ = x̌] −


h(ȳ)φ(ȳ|[x̌])dȳ


+

 h(ȳ)φ(ȳ|[x̌])dȳ −


h(ȳ)φ(ȳ|x̌)dȳ

 .
Here, h(ȳ)φ(ȳ|[x̌])dȳ −


h(ȳ)φ(ȳ|x̌)dȳ

 ≤ K1η2

on {x̌ : ∥x̌∥ < C0}, which has probability≥ 1−η3. Note that φ(.|x̌)
is not isotropic but has uniformly bounded mean and variance for
∥x∥ ≤ C0. From Remark 1, we know that it can be brought to an
isotropic position via an affine map. Then using Theorem 3.3 (with
a factor of constant λ > 0 to take into account the non-isotropic
conditional law) along with assumption (A2), (A3), we getE[h(Ȳ )|X̌ = x̌] −


h(ȳ)φ(ȳ|[x̌])dȳ

 < (K1 + K2L)η2 + 4η4 + K2ϵλ

with probability ≥ 1 − η3 −


4C0
η2

k1
e−cn0.992 . �

4. Concluding remarks

We have argued through a series of approximation steps that
conditional expectations in high dimensionsmay be approximated
by Gaussian integrals. From the nature of these results one expects
this effect to kick in for very high dimensions. In the context of our
original motivation, viz., to give some intuition why EnKF and its
variants work, this makes sense becausemost applications of EnKF
such as geophysics, meteorology, oceanography, etc., deal with
infinite dimensional systems that are being approximated by finite
dimensional caricatures for computational purposes. Nevertheless
the present results are a far cry from a rigorous theory for such
dynamical scenarios. Our hope is to provide an initial framework
to start thinking about it.
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